首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the problem of recovery from any double-link failure by exploiting shared path protection in wavelength-division multiplexing (WDM) mesh networks. We for the first time discover the phenomenon of sharing contradiction, which results in the violation of 100% recovery guarantee. To completely eliminate the sharing contradiction, we introduce the so-called preference policy, which implies that one of two backup paths (BPs) for each connection is given priority over the other to recover the failed active path (AP). Based on this policy, we propose a backup-multiplexing scheme with 100% recovery guarantee. Further, we transform the problem of minimizing the total number of wavelength-links under the wavelength continuity constraint while recovering from any dual-link failure to integer linear programming (ILP) formulations. Additionally, we investigate three preference policies, i.e., the first backup path preference policy (FBPPP), the second backup path preference policy (SBPPP), and the optimal preference policy (OPP). The numerical results show that our proposed backup multiplexing scheme can reduce about 30% wavelength-link consumption, compared to dedicated protection. Also, the results show that the policy, which specifies that the shorter one of two backup paths is preferred, generally outperforms the policy, which specifies that the longer one of two backup paths is preferred. Furthermore, the results show that OPP has a better performance when two BPs for each connection are more comparable in their lengths.  相似文献   

2.
As service providers move more applications to their IP/MPLS (multiple protocol label switching ) backbone networks, rapid restoration upon failure becomes more and more crucial. Recently MPLS fast reroute has attracted lots of attention as it was designed to meet the needs of real-time applications, such as voice over IP. MPLS fast reroute achieves rapid restoration by computing and signaling backup label switched path (LSP) tunnels in advance and re-directing traffic as close to failure point as possible. To provide a guarantee of bandwidth protection, extra bandwidth has to be reserved on backup paths. Using path merging technique as described in IETF RFC 4090 only, the network is able to share some bandwidth on common links among backup paths of the same service LSP, i.e., so-called intra-sharing. But no solution is provided on how to share bandwidth among backup paths of different service LSPs, i.e., so-called inter-sharing. In this paper, we provide an efficient distributed bandwidth management solution. This solution allows bandwidth sharing among backup paths of the same and different service LSPs, i.e., both intra-sharing and inter-sharing, with a guarantee of bandwidth protection for any single node/link failure. We also propose an efficient algorithm for backup path selection with the associated signaling extensions for additional information distribution and collection. To evaluate our schemes, we compare them via simulation with the basic MPLS fast reroute proposal, IETF RFC 4090, on two networks. Our simulation results show that using our bandwidth management scheme can significantly reduce restoration overbuild from about 250% to about 100%, and our optimized backup path selection can further reduce restoration overbuild to about 60%.  相似文献   

3.
Most research to date in survivable optical network design and operation, focused on the failure of a single component such as a link or a node. A double-link failure model in which any two links in the network may fail in an arbitrary order was proposed recently in literature [1]. Three loop-back methods of recovering from double-link failures were also presented. The basic idea behind these methods is to pre-compute two backup paths for each link on the primary paths and reserve resources on these paths. Compared to protection methods for single-link failure model, the protection methods for double-link failure model require much more spare capacity. Reserving dedicated resources on every backup path at the time of establishing primary path itself would consume excessive resources. Moreover, it may not be possible to allocate dedicated resources on each of two backup paths around each link, due to the wavelength continuous constraint. In M. Sridharan et al., [2,3] we captured the various operational phases in survivable WDM networks as a single integer programming based (ILP) optimization problem. In this work, we extend our optimization framework to include double-link failures. We use the double-link failure recovery methods available in literature, employ backup multiplexing schemes to optimize capacity utilization, and provide 100% protection guarantee for double-link failure recovery. We develop rules to identify scenarios when capacity sharing among interacting demand sets is possible. Our results indicate that for the double-link failure recovery methods, the shared-link protection scheme provides 10–15% savings in capacity utilization over the dedicated link protection scheme which reserves dedicated capacity on two backup paths for each link. We provide a way of adapting the heuristic based double-link failure recovery methods into a mathematical framework, and use techniques to improve wavelength utilization for optimal capacity usage.  相似文献   

4.
Protected Working Capacity Envelope (PWCE) has been proposed to simplify resource management and traffic control for survivable WDM networks. In a PWCE-based network, part of the link capacity is reserved for accommodating working routes, and the remaining capacity is reserved for backup routes. The shortest path routing is applied in PWCE-based networks. An arrival call is accepted only when each link along the shortest path has a free working channel. Such a working path routing scheme greatly simplifies the call admission control process for dynamic traffic, and it is especially suitable for implementation in a distributed manner among network nodes. In this article, we investigate two protection strategies: Bundle Protection (BP) and Individual Protection (IDP). In BP, only one backup path can be used to protect a failure component, whereas multiple backup paths can be used in IDP. We formulate four mixed integer non-linear programming (MINLP) problems using BP and IDP strategies for single link and single node failure protection. Each model is designed to determine link metrics for shortest working path routing, working and backup channel assignments, and backup path planning. Our objective is to minimize call-blocking probability on the bottleneck link. Since these models are highly non-linear and non-convex, it is difficult to obtain exact global optimal solutions. We propose a Simulated Annealing-based Heuristic (SAH) algorithm to obtain near optimal solutions. This SAH adopts the concepts of simulated annealing as well as the bi-section technique to minimize call-blocking probabilities. To evaluate the performance, we made simulation comparisons between SAH and the unity link weight assignment scheme. The results indicate that SAH can greatly reduce call-blocking probabilities on benchmark and the randomly generated networks.  相似文献   

5.
A new survivable algorithm called Self-organizing Shared-Path Protection (SSPP) is proposed to tolerate multi-link failures in wavelength division multiplexing optical networks. In SSPP, ant agents are used to search primary paths, and load balancing is considered in this approach to reduce blocking probability (BP). In the approach of search backup paths, different backup path ant agents use a same kind pheromone and these ant agents are attracted by each other, so different backup paths share more backup resources. In order to tolerate multi-link failures, self-organizing ant agents search new routes for carrying the traffic affected by the failures. Simulation results show that compared with other algorithms, SSPP has lower BP, better resource utilization ratio, and higher protection ability.  相似文献   

6.
Fast recovery and minimum utilization of resources are the two main criteria for determining the protection scheme quality. We address the problem of providing a hybrid protection approach on elastic optical networks under contiguity and continuity of available spectrum constraints. Two main hypotheses are used in this paper for backup paths computation. In the first case, it is assumed that backup paths resources are dedicated. In the second case, the assumption is that backup paths resources are available shared resources. The objective of the study is to minimize spectrum utilization to reduce blocking probability on a network. For this purpose, an efficient survivable Hybrid Protection Lightpath (HybPL) algorithm is proposed for providing shared or dedicated backup path protection based on the efficient energy calculation and resource availability. Traditional First-Fit and Best-Fit schemes are employed to search and assign the available spectrum resources. The simulation results show that HybPL presents better performance in terms of blocking probability, compared with the Minimum Resources Utilization Dedicated Protection (MRU-DP) algorithm which offers better performance than the Dedicated Protection (DP) algorithm.  相似文献   

7.
As the size and the complexity of optical mesh networks are continuing to grow and the severe natural disasters are occurring more frequently in recent years, multiple failures (link failures or node failures) become increasing probable. Protection strategies against these failures generally provision backup paths for working paths based on link-disjointness or node-disjointness. Compared with link-disjoint protection, node-disjoint protection means higher degree of risk isolation and can accommodate both link failures and node failures. This motivates us to propose a hybrid node-disjoint protection, named Segment and Path Shared Protection (SPSP), to provide 100% protection against arbitrary simultaneous double-node failures (the worst double-failure case). For each service connection request, SPSP first provisions backup segments for the working segments, respectively, as the primary backup resources, then provisions a single backup path for the whole working path as the second backup resource. In addition to its complete protection capability and flexible scalability for double failures, SPSP can also obtain better network load balance and resource sharing degree by dynamic link-cost adjustment and reserved backup resource sharing. Simulation results show that SPSP can achieve a shorter average recovery time than path shared protection (PSP) and higher resource utilization and lower blocking probability than segment shared protection (SSP).  相似文献   

8.
Path recovery aims at helping network operators automatically detecting and recovering from faults before human being’s intervening, and therefore can before customers notice these faults. By applying some algorithm of recovery, service provider (SP) can enhance the speed of repair and save paying refunds against broken service level agreement (SLA). Fast restoration of traffic after a network failure is a crucial aspect of current and future IP and transport networks. Recently, there is a…  相似文献   

9.
This paper proposes a backup path management method for time division multiple access (TDMA) based client wireless mesh networks (WMNs). In a TDMA based client WMN, as links/nodes fail or as nodes perform handover and as flows enter and leave the network, the paths between various nodes change as well as the bandwidth available along these paths. In these networks, to support the quality of service requirements of flows, backup paths with the required bandwidth need to be established dynamically. Some methods are proposed in the literature to establish backup paths which handle link/node failures and node handover in ad hoc networks, but none of these methods can provide backup paths with the required bandwidth dynamically. To address that issue, the present paper proposes a backup path management method which is adaptive to both topological changes and traffic changes in a network. Each node along the current path between a source and a destination finds backup paths with the required bandwidth in order to handle failure of the link to its downstream node and its own failure or handover. Nodes use two-hop neighborhood information and slots status information of two-hop neighbors to establish backup paths. We prove that the number of backup paths available when a node N searches for backup paths to handle its own failure are more than the number of backup paths available when some other node searches for the backup paths for the failure of node N. Performance of the proposed method is compared with the performance of a naive path management (NPM) method in which always the source establishes backup paths whenever a link/node fails or a node performs handover, and also with the performance of a backup path management method proposed in the literature. The proposed method significantly outperforms the NPM method and the method selected from the literature. For example, when the speed of the mobile nodes is 50 m/s, the packet delivery ratio with the proposed method is 63 % more than the NPM method and 35 % more than the method selected from the literature.  相似文献   

10.
This article presents a simple integrated provisioning/protection scheme to dynamically allocate restorable bandwidth guaranteed paths in IP over WDM networks. A guaranteed restorable path implies that a flow of data is successfully routed if both an active path and another alternate link-disjoint path are found at the same time. Unlike the conventional approach, where the IP and WDM layers are not aware of each other, the new scheme takes advantage of the development in generalized multi-protocol label switching (GMPLS) to provide integrated end-to-end survivability by incorporating network state information from both layers (e.g., the cost information in physical links, the bandwidth usage on each lightpath, and intermediate router speed) into protection path allocation. Simulation results are used to evaluate the performance of the new scheme and show that the proposed protection approach can efficiently improve the network utilization, and deliver reliable services  相似文献   

11.
In this paper we consider the problem of provisioning spare capacity in two-layer backbone networks using shared backup path protection. First, two spare capacity allocation (SCA) optimization problems are formulated as integer linear programming (ILP) models for the cases of protection at the top layer against failures at the bottom layer. The first model captures failure propagation using overlay information between two layers for backup paths to meet diversity requirements. The second model improves bandwidth efficiency by moving spare capacity sharing from the top layer to the bottom layer. This exposes a tradeoff between bandwidth efficiency and extra cross-layer operation. Next, the SCA model for common pool protection is developed to allow spare capacity sharing between two layers. Our previous SCA heuristic technique, successive survivable routing (SSR) is extended for these optimization problems. Numerical results for a variety of networks indicate that the common pool protection is attractive to enhance bandwidth efficiency without loss of survivability and that the SSR heuristic quickly results in near optimal solutions  相似文献   

12.
In this paper, we investigate the problem of dynamically establishing dependable connections in wavelength division multiplexing (WDM) mesh networks with traffic-grooming capabilities. We first develop a new wavelength-plane graph (WPG) to represent the current state of the network. We then propose a dynamic shared sub-path protection (SSPP) scheme based on this WPG. To establish a dependable connection, SSPP first searches a primary path for each connection request, and then it segments the found path into several equal-length sub-paths, and computes their corresponding backup paths, respectively. If two sub-paths in SSPP are fiber-disjoint then their backup paths can share backup resources to obtain optimal spare capacity. Based on dynamic traffic with different load, the performance of SSPP has been investigated via simulations. The results show that SSPP can make the tradeoffs between resource utilization and restoration time.  相似文献   

13.
The emerging multiprotocol label switching (MPLS) networks enable network service providers to route bandwidth guaranteed paths between customer sites. This basic label switched path (LSP) routing is often enhanced using restoration routing which sets up alternate LSPs to guarantee uninterrupted connectivity in case network links or nodes along primary path fail. We address the problem of distributed routing of restoration paths, which can be defined as follows: given a request for a bandwidth guaranteed LSP between two nodes, find a primary LSP, and a set of backup LSPs that protect the links along the primary LSP. A routing algorithm that computes these paths must optimize the restoration latency and the amount of bandwidth used. We introduce the concept of "backtracking" to bound the restoration latency. We consider three different cases characterized by a parameter called backtracking distance D: 1) no backtracking (D=0); 2) limited backtracking (D=k); and 3) unlimited backtracking (D=/spl infin/). We use a link cost model that captures bandwidth sharing among links using various types of aggregate link-state information. We first show that joint optimization of primary and backup paths is NP-hard in all cases. We then consider algorithms that compute primary and backup paths in two separate steps. Using link cost metrics that capture bandwidth sharing, we devise heuristics for each case. Our simulation study shows that these algorithms offer a way to tradeoff bandwidth to meet a range of restoration latency requirements.  相似文献   

14.
Protection techniques for optical networks mainly rely on pre-allocated backup bandwidth, which may not be able to provide full protection guarantee when multiple failures occur in a network. After recovering from the previous failure, if failure occurs again, unprotected or vulnerable lightpaths cannot be recovered. In this paper, the minimal backup reprovisioning (MBR) problem is studied, in which the failure-independent path protecting p-cycles (FIPP p-cycles) scheme is considered for single-node failure on WDM networks. After recovering the affected lightpaths from a node failure, the goal of the MBR is to re-arrange the protecting and available resources such that working paths can be protected against next node failure if possible. An algorithm is designed to recover the protecting capabilities of the FIPP p-cycles, unless there is no sufficient network resource. The simulation results of the proposed method are also given.  相似文献   

15.
The ever-increasing demand for network bandwidth makes network survivability an issue of great concern. Lightpath restoration is a valuable approach to guaranteeing an acceptable level of survivability in WDM optical networks with better resource utilization than that of its protection counterpart. Active restoration (AR) is a newly proposed lightpath restoration scheme [M. Mostafa et al. OSA Journal of Optical Networking, vol. 3, no. 4, pp. 247–260] that combines the best of protection and reactive restoration while avoiding their shortcomings. In this paper, we conduct detailed performance analysis on the restoration probability of AR-based WDM networks. In particular, analytical models of restoration probability are developed respectively for networks with full-wavelength conversion capability and for networks without wavelength conversion capability under different backup path searching schemes. Based on the new models, we investigate the effects of wavelength availability, wavelength conversion capability, path length as well as backup path seeking methods on the restoration probability.  相似文献   

16.
WDM疏导网络的共享子通路保护算法   总被引:4,自引:4,他引:0  
研究了WDM疏导网络中的生存性问题,提出一种支持多粒度业务的共享子通路保护算法(GSSP)。GSSP首先根据网络当前状态动态调整链路权值,在此基础上选择一条最短路作为工作通路;然后将该通路分为互不重叠的等长子通路,分别找出它们的保护通路,并且允许共享保护资源。GSSP可以保证业务连接的可靠性,又允许网络管理者根据不同的优化策略调整子通路长度,可以在恢复时间和资源利用率之间进行折中。最后对GSSP进行了仿真研究,给出了仿真结果。  相似文献   

17.
For high-speed networks, a restoration mechanism based on backup path (BP) provides a means for assuring their survivability. We propose a two-phase BP reservation mechanism for high-speed networks. In the admission phase, a pair of working path (WP) and backup path is selected from the provisioned sets of WPs and BPs. In the adjustment phase, if backup capacity utilization exceeds the preset threshold, BP assignments are rearranged to optimize the usage of backup capacity. A mathematical model is formulated to verify the quality of the optimized solutions. Computational experiments indicate that the proposed mechanism significantly reduces the consumption of backup capacity while still maintaining a high degree of survivability. Moreover, experiments show that the optimized solutions obtained are on average within 3.6 percent of optimal.  相似文献   

18.
The paper presents new algorithms for dynamic routing of restorable bandwidth-guaranteed paths. We assume that connections are requested one-by-one and there is no prior knowledge of future arrivals. In order to guarantee restorability an alternate link (node) disjoint backup (restoration) path has to be determined, as well as an active path, when the connection is initiated. This joint on-line routing problem is particularly important in optical networks and in MPLS networks for dynamic provisioning of bandwidth-guaranteed or wavelength paths. A simple solution is to find two disjoint paths, but this results in excessive resource usage. Backup path bandwidth usage can be reduced by judicious sharing of backup paths amongst certain active paths while still maintaining restorability. The best sharing performance is achieved if the routing of every path in progress in the network is known to the routing algorithm at the time of a new path setup. We give a new integer programming formulation for this problem. Complete path routing knowledge is a reasonable assumption for a centralized routing algorithm, but is not often desirable, particularly when distributed routing is preferred. We show that a suitably developed algorithm which uses only aggregated information, and not per-path information, is able to perform almost as well as one using complete information. Disseminating this aggregate information is feasible using proposed traffic engineering extensions to routing protocols. We formulate the dynamic restorable bandwidth routing problem in this aggregate information scenario and develop efficient routing algorithms. The performance of our algorithm is close to the complete information bound.  相似文献   

19.
Survivability is of critical importance in high-speed optical communication networks. A typical approach to the design of survivable networks is through a protection scheme that pre-determines and reserves backup bandwidth considering single/double link failure scenarios. In this article, a greedy algorithm is presented to reserve backup bandwidth considering multiple (F > 2) link (SRLG) failure scenarios. A bandwidth-saving joint selection scheme of working and protection paths is presented for protection against random multiple-link failures under dynamic traffic. Simulation shows that the algorithm can achieve maximum sharing of backup bandwidth for protection against random multiple-link failure with significant amount of bandwidth saving.  相似文献   

20.
In WDM networks, path protection has emerged as a widely accepted technique for providing guaranteed survivability of network traffic. However, it requires allocating resources for backup lightpaths, which remain idle under normal fault-free conditions. In this paper, we introduce a new design strategy for survivable network design, which guarantees survivability of all ongoing connections that requires significantly fewer network resources than protection based techniques. In survivable routing, the goal is to find a Route and Wavelength Assignment (RWA) such that the logical topology remains connected for all single link failures. However, even if the logical topology remains connected after any single link fault, it may not have sufficient capacity to support all the requests for data communication, for all single fault scenarios. To address this deficiency, we have proposed two independent but related problem formulations. To handle our first formulation, we have presented an Integer Linear Program (ILP) that augments the concept of survivable routing by allowing rerouting of sub-wavelength traffic carried on each lightpath and finding an RWA that maximizes the amount of traffic that can be supported by the network in the presence of any single link failure. To handle our second formulation, we have proposed a new design approach that integrates the topology design and the RWA in such a way that the resulting logical topology is able to handle the entire set of traffic requests after any single link failure. For the second problem, we have first presented an ILP formulation for optimally designing a survivable logical topology, and then proposed a heuristic for larger networks. Experimental results demonstrate that this new approach is able to provide guaranteed bandwidth, and is much more efficient in terms of resource utilization, compared to both dedicated and shared path protection schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号