The equations of the general rate model of chromatography and those of simple models (the POR, equilibrium-dispersive, and transport-dispersive models) are derived for beds packed with shell particles. Shell particles are made of a solid, nonporous core surrounded by a shell of a porous material that has properties similar to those of the fully porous materials conventionally used in HPLC. These equations have no algebraic solutions, but the moments of the peaks eluted under linear conditions can be calculated, affording the HETP equation for these columns. The discussion of the contribution to the HETP of the mass-transfer resistances shows that shell particles exhibit much lower plate heights for large molecular size compounds (e.g., peptides and proteins) than do fully porous particles, this advantage increasing with decreasing thickness of the shell. In contrast, the efficiencies of columns packed with shell particles and with fully porous particles having the same diameters are nearly the same for low molecular weight compounds. In practice, the gain in efficiency due to the use of shell particles to separate high molecular weight compounds does not depend on the thickness of the shell provided that this thickness does not exceed 30-40% of the particle diameter. For larger thicknesses, it decreases with increasing thickness. Shell particles can also be used in preparative chromatography. For compounds that have a high internal mass-transfer resistance, the gain in efficiency compensates the reduction in sample capacity due to the lower volume of porous adsorbent. For proteins like BSA, the production rate could be doubled. The gain decreases with decreasing mass-transfer resistance, e.g., with decreasing molecular weight. 相似文献
The dynamic removal of copper by Purolite C100-MB cation exchange resin was studied in packed bed columns. The values of column parameters are predicted as a function of flow rate and bed height. Batch experiments were performed using the Na-form resin to determine equilibrium and kinetics of copper removal. The uptake of Cu(II) by this resin follows first-order kinetics. The effect of stirring speed and temperature on the removal kinetics was studied. The activation energy for the exchange reaction is 13.58kJmol(-1). The equilibrium data obtained in this study have been found to fit both the Langmuir and Freundlich isotherm equations. A series of column tests were performed to determine the breakthrough curves with varying bed heights and flow rates. To predict the breakthrough curves and to determine the characteristic parameters of the column useful for process design, four kinetic models; Bohart-Adams, Bed Depth Service Time (BDST), Clark and Wolborska models are applied to experimental data. All models are found suitable for describing the whole or a definite part of the dynamic behavior of the column with respect to flow rate and bed height. The simulation of the whole breakthrough curve is effective with the Bohart-Adams and the Clark models, but the Bohart-Adams model is better. The breakthrough is best predicted by the Wolborska model. The breakthrough data gave a good fit to the BDST model, resulting in a bed exchange capacity very close to the value determined in the batch process. 相似文献
Samples of an acidic cation exchanger have been prepared by sulphonation of acrylonitrile butadiene styrene copolymer previously cross-linked with phenol-formaldehyde resin. The samples having a cation exchange capacity of 3.48 meqg–1, are being introduced as new catalysts in the hydrolysis of ethyl acetate. The synthesized cation exchanger shows good thermal and chemical stability. Hydrolysis rate constants (Kr values) for the catalysed reaction have been determined. The efficiency of the resin catalyst,q, is shown to be a function of resin concentration. 相似文献
The ability of Raman spectroscopy and Fourier transform infrared (FT-IR) microscopy to discriminate between resins used for the manufacture of architectural finishes was examined in a study of 39 samples taken from a commercial resin library. Both Raman and FT-IR were able to discriminate between different types of resin and both split the samples into several groups (six for FT-IR, six for Raman), each of which gave similar, but not identical, spectra. In addition, three resins gave unique Raman spectra (four in FT-IR). However, approximately half the library comprised samples that were sufficiently similar that they fell into a single large group, whether classified using FT-IR or Raman, although the remaining samples fell into much smaller groups. Further sub-division of the FT-IR groups was not possible because the experimental uncertainty was of similar magnitude to the within-group variation. In contrast, Raman spectroscopy was able to further discriminate between resins that fell within the same groups because the differences in the relative band intensities of the resins, although small, were larger than the experimental uncertainty. 相似文献
The present study investigates the use of co-word analysis method to understand the micro structure of a research speciality.
This study is done in the area of Condensed Matter Physics (CMP) taking two time-periods, 1990 and 1995. Based on concurrent
set of journals occurring in the subject heading list of CMP in these two time-periods, a database is created after downloading
articles present in these journals from the INSPEC database. Using words extracted from the titles from the created database,
suitable co-word pairs are constructed. These words, and co-word pairs are explored further to understand their linkages with
each other through network analysis methods. Dynamics, within the CMP across 1990 and 1995, are investigated through the comparison
of the words, co-word pairs and structurally equivalent blocks. The results are projected using multi-dimensional scaling.
The important conclusions of this study are discussed. 相似文献
It has been shown that oxidatively modified forms of proteins accumulate during oxidative stress, aging, and in some age-related diseases. One of the unique features of protein oxidation by a wide variety of routes is the generation of carbonyl groups. Of major interest in the study of oxidative stress diseases is which proteins in a proteome are being oxidized and the site(s) of oxidation. Based on the fact that proteins are generally characterized through tryptic peptide fragments, this paper reports a method for the isolation of oxidized peptides, which involves (1) derivatization of oxidized proteins with Girard P reagent (GRP; 1-(2-hydrazino-2-oxoethyl)pyridinium chloride), (2) following proteolysis enrichment of the derivatized peptide using strong cation exchange (SCX) chromatography, and (3) identification of oxidation sites using tandem mass spectrometry. Derivatization of aldehydes and ketones in oxidized proteins was accomplished by reacting protein carbonyls with the hydrazide of GRP. The resulting hydrazone bond was reduced by sodium cyanoborohydride to further stabilize the labeling. Derivatization time and concentrations of the derivatizing agent were optimized with model peptides. Oxidized transferrin was used as model protein to study derivatization efficiency at the protein level. Following metal-catalyzed oxidation of transferrin, the protein was derivatized with GRP and trypsin digested. Positively charged peptides were then selected from the digest with SCX chromatography at pH 6.0. Seven GRP-derivatized peptides were found to be selected from transferrin by MALDI-TOF-TOF analysis. Fourteen underivatized native peptides were also captured by the SCX column at pH 6.0. Mapping of the derivatized peptides onto the primary structure of transferrin indicated that the oxidation sites were all on solvent-accessible regions at the protein surface. Efficiency of the method was further demonstrated in the identification of oxidized proteins from yeast. 相似文献
A protocol was developed to characterize the domain-specific thermodynamic stabilities of multidomain proteins using SUPREX (Stability of Unpurified Proteins from Rates of H/D Exchange). The protocol incorporates a protease digestion step into the conventional SUPREX protocol and enables folding free energy (DeltaGf) and cooperativity (m-value) measurements to be made on the individual domains of multidomain proteins in their native context (i.e., in the intact protein). Three multidomain protein systems (calmodulin, a Fyn construct, and transferrin) were used to validate the SUPREX-protease digestion protocol. The DeltaGf and m-value of each domain in the intact test proteins were measured in the absence and presence of ligands using the new protocol. Domain-specific thermodynamic parameters were obtained on each system; and the measured parameters were consistent with known biophysical properties of the test proteins. The known stabilization of the N-terminal domain of CaM in the context of the intact protein and the known binding affinity of a proline-rich peptide to the SH3 domain in the Fyn construct were successfully quantified using the new protocol. Qualitative information about the relative calcium binding affinities of the N- and C-terminal domains of CaM and about the relative iron binding affinities of the N- and C-terminal domains of transferrin was also obtained using the new protocol. 相似文献
The surface-assisted hierarchical self-assembly of DNA origami lattices represents a versatile and straightforward method for the organization of functional nanoscale objects such as proteins and nanoparticles. Here, we demonstrate that controlling the binding and exchange of different monovalent and divalent cation species at the DNA-mica interface enables the self-assembly of highly ordered DNA origami lattices on mica surfaces. The development of lattice quality and order is quantified by a detailed topological analysis of high-speed atomic force microscopy (HS-AFM) images. We find that lattice formation and quality strongly depend on the monovalent cation species. Na+ is more effective than Li+ and K+ in facilitating the assembly of high-quality DNA origami lattices, because it is replacing the divalent cations at their binding sites in the DNA backbone more efficiently. With regard to divalent cations, Ca2+ can be displaced more easily from the backbone phosphates than Mg2+ and is thus superior in guiding lattice assembly. By independently adjusting incubation time, DNA origami concentration, and cation species, we thus obtain a highly ordered DNA origami lattice with an unprecedented normalized correlation length of 8.2. Beyond the correlation length, we use computer vision algorithms to compute the time course of different topological observables that, overall, demonstrate that replacing MgCl2 by CaCl2 enables the synthesis of DNA origami lattices with drastically increased lattice order.
An elasto-plastic finite strip method is used to analyse the behaviour of steel columns at increasing temperature. The degradation in structural properties of the material is fully accounted for by representing the stress-strain-temperature relationship as a series of Ramberg-Osgood equations. An existing algorithm is then used to ensure convergence on the critical buckling load at a particular temperature. The efficiency of the computational process enables results very readily to be obtained over a range of temperatures. Comparisons with available experimental data demonstrate the accuracy of the method and some illustrative results are given to show the influence of slenderness, residual stress and eccentricity of loading. 相似文献
Targeted thorium conjugates (TTCs) are being explored as a potential future platform for specific tumor targeting pharmaceuticals. In TTCs, the alpha emitting radionuclide thorium-227 (227Th) with a half-life of 18.697 d is labeled to targeting moieties, such as monoclonal antibodies (mAbs). The amount of daughter nuclide radium-223 (223Ra, t1/2?=?11.435 d) will increase during manufacture and distribution, and so a technology for purification is required to assure an acceptable level of 223Ra is administrated to the patient. Since 223Ra is the only progeny of 227Th with a long half-life (days), the progenies of 223Ra will have a very limited stay in the formulation once 223Ra is removed. The focus in this study has, therefore, been on the removal of 223Ra. In this study, the sorption and separation of 223Ra (radium(II)) and 227Th (thorium(IV)) on cation exchange columns has been evaluated as a purification method of decayed 227Th (i.e. prior to radiolabelling of a mAb and formation of TTC). The goal is to minimize the sorption of 227Th and maximize the sorption of 223Ra. Statistical experimental design with formulation and process parameters, including buffered formulations comprising citrate and acetate, at various concentrations and pH, presence of free radical scavenger and chelator, and resin amount have been evaluated for impact on the purification process. The studies have been interpreted by the aid of multivariate data analysis. The correlations between design of experimental variables and sorption are summarized by regression models. The predictive accuracy of radionuclide sorption was given by standard deviation and 95% confidence intervals originating from statistical cross validation. Experimental results and statistical models for citrate-buffered formulations verified reproducible and acceptable sorption levels of 223Ra and 227Th under selected conditions. For acetate-buffered formulations, prediction of 227Th sorption was influenced by complex variable relationships and hence a risk of obtaining irreproducibility. Fine-tuned variable levels showed, however, variable combinations predicting high sorption of 223Ra (>90%) and low sorption of 227Th (<3%) also for the acetate-buffered formulations. The optimal separation conditions should be decided based on tuning the variables levels for 223Ra in the citrate-buffered formulations, while for acetate, the optimal separation should be based on tuning variable levels for 227Th sorption. The ionic strength of the formulation also seemed to affect the radionuclide sorption. Labeling of an antibody-chelator conjugate with purified 227Th (i.e. preparation of TTC) was successful in the selected citrate-buffered formulations tested. 相似文献
Tumor targeting pharmaceuticals will play a crucial role in future pharma pipelines. The targeted thorium conjugate (TTC) therapeutic platform could provide real benefit to patients, whereby targeting moieties like monoclonal antibodies are radiolabelled with the alpha-emitting radionuclide thorium-227 (227Th, t1/2?=?18.7?days). A potential problem could be the accumulation of the long-lived daughter nuclide radium-223 (223Ra, t1/2?=?11.4?days) in the drug product during manufacturing and distribution. Therefore, the level of 223Ra must be standardized before administration to the patient. The focus in this study has been the removal of 223Ra, as the other progenies will have a very limited stay in the formulation. In this study, the purification of TTCs labeled with decayed 227Th has been explored. Columns packed with a strong cation exchange resin have been used to sequester 223Ra. The separation of TTC from 223Ra has been evaluated as influenced by both formulation and process parameters with a design of experiments (DOE) study; including citrate or acetate buffer, pH, buffer concentration, presence or absence of pABA?+?EDTA, resin amount and sodium chloride concentration. The aim was to achieve a separation with high sorption of 223Ra and accompanying low TTC sorption. The results were analyzed by multivariate analysis. Four regression models of TTC and 223Ra sorption from citrate and acetate buffered formulations were developed. The predictive accuracy of sorption in the four statistical models was given by standard deviations and confidence intervals. The TTC sorption in citrate and acetate buffered formulations was affected by the identical variables and the variation in TTC sorption was comparable for the two models. However, the DOE variables had a significantly stronger impact on the 223Ra sorption in citrate buffered formulations than the 223Ra sorption in acetate buffer. An optimal separation with a TTC sorption below 25% and 223Ra sorption above 90% can be achieved in both citrate and acetate buffered formulations. Stability studies of radiochemical purity (RCP) indicated that the measured 227Th values may be partly due to free 227Th and not TTC, but the results indicate that TTC stability may be controlled by optimizing formulation parameters. Hence, the sorption data and the regression models presented must be reviewed and further explored with regard to what is known about the stability of the TTC in the different buffered formulations. 相似文献
Short-lived radioactive 131I and 82Br tracers were used to study the kinetics of ion-isotope exchange reaction. The experiments were performed in the temperature
range 26.0–43.0°C, ion concentration in solution in the range 0.0025–0.020 M, and amount of labeled ion-exchange resin varying
from 0.250 to 1.250 g. For bromide ion-isotope exchange reactions, the calculated values of specific reaction rate, initial
rate of bromide ion exchange, and amount of bromide ions exchanged were obtained higher than those for iodide ion-isotope
exchange reactions under identical experimental conditions. The observed difference is attributed to the difference in the
ionic size of bromide and iodide ions in solution.
Published in Russian in Radiokhimiya, 2007, Vol. 49, No. 5, pp. 455–457.
The text was submitted by the authors in English. 相似文献
The nanopore technique has great potential to discriminate conformations of proteins. It is a very interesting system to mimic and understand the process of translocation of biomacromolecules through a cellular membrane. In particular, the unfolding and folding of proteins before and after going through the nanopore are not well understood. We study the thermal unfolding of a protein, probed by two protein nanopores: aerolysin and α-hemolysin. At room temperature, the native folded protein does not enter into the pore. When we increase the temperature from 25 to 50 °C, the molecules unfold and the event frequency of current blockade increases. A similar sigmoid function fits the normalized event frequency evolution for both nanopores, thus the unfolding curve does not depend on the structure and the net charge of the nanopore. We performed also a circular dichroism bulk experiment. We obtain the same melting temperature (around 45 °C) using the bulk and single molecule techniques. 相似文献
We demonstrate that it is possible to convert CdSe nanocrystals of a given size, shape (either spherical or rod shaped), and crystal structure (either hexagonal wurtzite, i.e., hexagonal close packed (hcp), or cubic sphalerite, i.e., face-centered cubic (fcc)), into ZnSe nanocrystals that preserve all these characteristics of the starting particles (i.e., size, shape, and crystal structure), via a sequence of two cation exchange reactions, namely, Cd(2+) ?Cu(+) ?Zn(2+). When starting from hexagonal wurtzite CdSe nanocrystals, the exchange of Cd(2+) with Cu(+) yields Cu(2)Se nanocrystals in a metastable hexagonal phase, of which we could follow the transformation to the more stable fcc phase for a single nanorod, under the electron microscope. Remarkably, these metastable hcp Cu(2)Se nanocrystals can be converted in solution into ZnSe nanocrystals, which yields ZnSe nanocrystals in a pure hcp phase. 相似文献