首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用高压辊磨—粗粒湿式磁选抛尾—阶段磨矿、阶段弱磁工艺流程对钟山磁铁矿进行了选别试验。结果表明,高压辊磨产品(-3 mm)经湿式预选后可提前抛出产率50.05%、全铁品位8.33%的尾矿,入磨矿石铁品位由23.67%提高到39.18%,为降低企业生产成本提供了技术支撑;预选精矿经阶段磨矿、阶段弱磁选可获得铁品位65.13%、铁回收率61.48%、磁性铁回收率98.65%的最终铁精矿产品。  相似文献   

2.
钟山铁矿选矿工艺研究   总被引:1,自引:0,他引:1  
朱德馨 《现代矿业》2014,(3):32-34,11
采用高压辊磨—粗粒湿式磁选抛尾—阶段磨矿、阶段弱磁工艺流程对钟山磁铁矿进行了选别试验。结果表明,高压辊磨产品(-3 mm)经湿式预选后可提前抛出产率50.05%、全铁品位8.33%的尾矿,入磨矿石铁品位由23.67%提高到39.18%,为降低企业生产成本提供了技术支撑;预选精矿经阶段磨矿、阶段弱磁选可获得铁品位65.13%、铁回收率61.48%、磁性铁回收率98.65%的最终铁精矿产品。  相似文献   

3.
李振乾  王亚强 《现代矿业》2020,36(7):155-157
针对陕西大西沟选矿厂磁铁矿石入磨粒度较粗、品位较低的情况,为了提高入磨矿石铁品位,实现降本增效的目标,对10~0 mm常规破碎产品进行了预选抛尾试验。结果表明:干式预选可抛出产率为29.57%、磁性铁品位为0.83%的尾矿,干抛精矿磁性铁品位提高了5.85个百分点,全铁回收率为82.95%、磁性铁回收率达98.34%;湿式预选可抛出产率为39.33%、磁性铁品位为061%的尾矿,湿抛精矿磁性铁品位提高了9.23个百分点,全铁回收率为78.83%、磁性铁回收率达98.38%;无论从抛尾产率还是从精矿品位和回收率看,湿抛效果更好;湿抛尾矿中可筛分出产率为22.57%的+0.5 mm粒级作为建筑用砂出售。  相似文献   

4.
为探索采用高效碎磨工艺处理福建马坑铁矿石的可行性,进行了高压辊磨—湿式中磁预选—阶段磨选工艺流程试验。结果表明:较常规碎矿工艺,高压辊磨破碎获得的产品细粒级含量显著提高,能够满足湿式中磁预选的粒度要求;磨矿条件相同时,高压辊磨产品相对传统颚式破碎产品新生成-0.074 mm粒级含量高,相对可磨度高;高压辊磨产品(-5 mm)经湿式中磁预选—两阶段磨矿弱磁选,可在磨前抛出38.88%的合格尾矿,并可获得铁品位为66.75%、磁性铁品位为65.95%、铁回收率为80.21%、磁性铁回收率为96.25%的铁精矿,精矿铁品位较现场提高了2.66个百分点、铁回收率提高了0.30个百分点,可作为马坑铁矿节能降耗、提质增效改造设计的依据。  相似文献   

5.
根据印尼某低品位铁矿石的特性,采用预选抛尾—磨矿—弱磁选工艺流程对该矿进行了选铁实验室试验研究。结果表明,原矿破碎至-3mm采用湿式弱磁预选,可抛弃产率73.58%的废石,提高入磨铁矿石TFe品位至32.47%,其中磁性铁的损失仅为2.14%左右,磁性产品磨矿至-200目75%后经弱磁选铁,最终可获得产率13.31%,TFe品位57.44%、回收率63.41%,含V2O50.54%、TiO29.16%的铁精矿。  相似文献   

6.
为高效合理开发利用利比里亚某铁矿石,针对该低磷低硫混合型低品位铁矿石磁铁矿嵌布粒度细等问题,进行了铁矿石高压辊磨破碎—干式预选工艺试验研究。研究结果表明:采用该新工艺处理该铁矿石,获得的精矿铁品位为45.08%,铁回收率达84.22%,尾矿铁品位降至17.16%,且磁性铁品位仅为0.95%;精矿产品中-3.0 mm粒级占比97.90%,-0.074 mm粒级占比21.15%;高压辊磨—干式预选工艺对于提高抛尾率、降低铁矿石入磨粒度,减少铁矿石直接生产成本效果显著,为该矿石的开发利用提供了新思路。  相似文献   

7.
对秘鲁某金铜铁多金属矿含Cu 0.080%、Au 0.04 g/t、S 1.28%、Fe 19.83%的浅部低品位矿石进行了选矿预选富集试验研究。由于该矿前期开采处理的浅部矿主金属铁及铜、金等伴生有价金属品位较低,采用原设计的浮选—磁选工艺处理,存在原矿入磨量大、磨选成本高、分选难度大等问题。根据矿石的工艺矿物学研究特性,提出采用-25 mm原矿干抛—干抛精矿高压辊磨细碎—高压辊磨细碎产品湿抛—预抛尾矿分级回收铜铁的工艺进行选矿预选富集。选矿预选富集全流程试验最终获得铜品位0.10%、铁品位30.13%、铜回收率73.13%、铁回收率89.83%的总预选精矿,总预选抛尾率为40.19%。项目成果为提高选厂后续磨浮作业的入选品位,降低入磨矿量和磨选成本,综合回收矿石中铁铜等伴生有价金属创造了良好的前提条件。  相似文献   

8.
姑山矿和睦山选矿厂入磨磁铁矿石(20~0 mm)中存在大量废石,导致选矿生产效率低、生产成本高、尾矿库压力大、影响最终精矿品质的提升。为解决这些问题,对入磨铁矿石分别采用XGD65 50吸出辊带式干选机和ZCLA560 500选矿机进行了干式预选和湿式预选试验研究。结果表明:入磨磁铁矿石采用干式预选可抛除产率达15.94%的尾矿,抛尾全铁品位8.68%,尾矿磁性铁品位1.20%,预选精矿较原矿全铁品位提高了4.48个百分点。入磨磁铁矿石采用湿式预选可抛除产率达21.34%的尾矿,抛尾全铁品位8.89%,预选精矿较原矿全铁品位提高了6.74个百分点。预先抛尾减少了入磨矿石量,提高了后续作业的入选铁品位,有利于降低能耗、提高流程处理能力,为选矿流程的技术改造提供了依据。  相似文献   

9.
研山铁矿针对入磨矿石性质变化频繁的问题,进行了磨前湿式预选试验研究与改造。改造后生产数据表明,磨前湿式预选取得了良好的工艺技术指标,提前抛尾产率1907%,尾矿全铁品位701%,磁性铁品位079%,入磨品位从2315%提高到2774%,提高了459个百分点,既增加了球磨机有效处理量,又稳定了生产流程。  相似文献   

10.
某铁矿选矿厂氧化矿和原生矿生产系列铁品位分别为24.21%、25.67%,直接入磨铁品位较低,造成铁精矿产量低、磨矿作业能耗高。为提高入磨矿石铁品位,分别对氧化矿和原生矿进行磨前预选抛尾试验。结果表明,氧化矿和原生矿筛分(筛分粒度6 mm)后,分别经粗选—粗选尾矿再选和1次磁选流程预选抛尾,最终入磨矿石铁品位可分别提高到26.10%、30.69%,不仅能降低选矿成本,还能提高铁精矿产量,可为选矿厂磨前预选抛尾技术改造提供理论依据和技术支撑。  相似文献   

11.
采用浅部矿的预选工艺对秘鲁某金铜铁多金属矿含Cu 0.127%、Au 0.08 g/t、S 2.08%、Fe 40.56%的深部矿石进行了选矿预选富集试验研究,为该矿石的合理预选工艺提供参考。结果表明,浅部矿的预抛—分级预选工艺(原矿-25 mm干抛—干抛精矿高压辊磨细碎—高压辊磨细碎产品湿抛—预抛尾矿分级回收)对深部矿石具有较好的适应性和预选富集效果,最终获得铜品位0.13%、铁品位48.76%、铜回收率87.49%、铁回收率97.93%的总预选精矿,总预选抛尾率为18.84%。项目成果为该矿石的合理预选工艺选择提供了参考,并为提高选厂后续磨浮作业的矿石入选品位,降低入磨矿量和磨选成本,综合回收矿石中铁铜等伴生有价金属创造了良好的前提条件。  相似文献   

12.
蒙古国某铁矿石铁品位为36.65%,磁性铁品位为29.97%。铁主要以磁性铁形式存在,分布率为81.77%。采用块矿(-70 mm)干选—细碎(-12 mm)—两段粉矿干选工艺处理铁矿石,可以获得全铁品位45.40%、磁性铁品位40.79%、全铁回收率为88.88%、磁性铁回收率为97.59%的干式预选精矿。  相似文献   

13.
新疆某低硫磷超贫磁铁矿石平均铁品位为15.68%,磁性铁品位为10.03%,处于待开发状态。为了解高压辊磨超细碎—湿式预选抛尾工艺处理该矿石的节能增效效果,对该矿石进行了高压辊磨试验、辊压产品中磁干抛试验、粗粒湿式磁选试验、筛上干抛试验,以及辊压前矿石与粗粒湿式磁选精矿的可磨度对比试验。结果表明:(1)30~0 mm的干抛精矿采用高压辊磨闭路(筛孔宽5 mm)辊压破碎—粗粒湿式磁选工艺处理,可抛出作业产率达43.40%的尾矿,提高精矿磁性铁品位10.10个百分点、磁性铁作业回收率98.26%;(2)按磨矿产品-0.074 mm粒级含量分别为50%和80%计算的粗粒湿式磁选精矿相对干抛精矿的相对可磨度分别为1.41和1.26;(3)对高压辊磨—筛分闭路破碎系统返回料进行干抛,可抛出作业产率为55.65%、磁性铁品位为0.88%的块状尾矿,块状精矿磁性铁作业回收率达97.13%。可见,高压辊磨机的应用,能大幅度减少矿石入磨量,提高入磨品位,改善球磨给矿的可磨性,大幅度提高球磨机处理量,降低磨矿能耗;产出大量的块状尾矿和粗粒尾矿,可减少尾矿浆体的输送量和堆存量,从而减少尾矿输送和堆存费用,块状尾矿和粗粒尾矿有助于实现选矿厂固体废弃物的资源化利用。因此,高压辊磨机在该矿山有着很好的应用前景。  相似文献   

14.
为优化酒钢集团某矿厂铁矿分选工艺流程,提高入磨矿品位,降低选矿成本,开展了高压辊磨超细碎—预先磁选抛尾试验研究。结果表明,一段磁选抛尾精矿铁品位为24.85%,磁性铁回收率为98.91%,尾矿磁性铁品位为1.58%;二段磁选精矿铁品位为26.73%,磁性铁回收率为98.58%,尾矿磁性铁品位为2.38%;在高压辊磨磁选试验中,湿式磁选抛尾效果较好,在3 mm湿式磁选抛尾工艺中,磁选精矿品位为28.62%,回收率为94.83%;在5 mm湿式磁选抛尾工艺中,磁选精矿品位为28.35%,回收率为95.54%。  相似文献   

15.
袁风香 《现代矿业》2013,29(1):114-115,128
针对某原矿铁品位为16.65%的低品位磁铁矿,为有效利用低品位矿产资源,结合目前较为先进的选矿工艺,对铁矿石进行了中碎产品干式磁选-高压辊磨-粗粒湿式磁选-磨矿弱磁选试验流程,最终获得了产率为40.10%、全铁品位为30.20%、全铁回收率为72.73%、磁性铁品位为25.42%、磁性铁回收率为96.76%的满意指标,并可抛去产率为59.90%、全铁品位为7.58%、磁性铁品位为0.57%的预选尾矿。  相似文献   

16.
安徽某磁铁矿为解决生产流程堵塞难题,针对含泥量大的问题,对中碎前预先筛分筛下矿石进行了脱泥抛尾试验。试验结果表明:(1)原矿采用干式磁选工艺,可抛弃产率48.37%、全铁品位13.12%、磁性铁品位4.62%的尾矿,磁性铁回收率79.91%;(2)对原矿中粒75~20 mm、20~0 mm物料分别采用干式磁选工艺,可抛弃产率41.80%、全铁品位11.78%、磁性铁品位0.64%的尾矿,可获得全铁品位18.37%、磁性铁品位8.81%的综合铁精矿;(3)原矿采用高压辊磨+湿式磁选工艺,可抛弃产率37.75%、全铁品位9.35%、磁性铁品位0.33%的尾矿,精矿品位提高至22.89%,磁性铁回收率达98.89%,湿式预选指标较优。  相似文献   

17.
为提高梅山铁矿磨前20~2 mm粒级预选精度,针对现有预选流程存在的精矿中脉石夹杂、尾矿金属损失大等问题,对该粒级原矿开展了选别试验研究。试验结果表明,磨前预选20~2 mm粒级磁滑轮精矿经过精选,可得到铁品位48.96%、铁回收率83.97%的精矿,铁品位提高了5.86个百分点;采用新型高磁场力2RTGX0612筒式永磁强磁选机的精矿铁品位平均达36.79%,尾矿铁品位平均11.01%;相比现有辊式强磁选机精矿铁品位提升了2.59个百分点,尾矿铁品位降低了2.19个百分点,分选效率明显提升;在金属回收率比辊式强磁选机提升0.93个百分点的前提下,相比原辊式强磁选机精矿量(入磨矿量)减少了4.09个百分点。  相似文献   

18.
内蒙古某贫磁铁矿石为含磁铁矿石英岩,矿石铁品位为34.21%,杂质成分主要为Si O2。矿石中铁主要以磁铁矿形式存在,铁在磁铁矿中分布率为57.94%,其次为硅酸铁,占总铁的21.25%。为给该矿石的合理预选工艺提供参考,进行了高压辊磨—磁选预选抛尾试验。结果表明:破碎至-30 mm矿石经高压辊磨闭路破碎至-3 mm后湿式预选指标优于高压辊磨闭路破碎至-5 mm后干式预选指标,-3 mm产品在磁场强度为151.27 k A/m条件下弱磁选,获得的预选精矿铁品位为43.02%、回收率为83.21%,磁性铁品位为29.81%、回收率为99.17%,可抛除产率为33.79%的废石。矿石可磨度对比试验结果表明,在获得相同的磨矿细度时,高压辊磨破碎后矿石所需要的磨矿时间更短,且高压辊磨破碎粒度越细,矿石的可磨度越好。  相似文献   

19.
湖南某低品位铁矿石TFe品位24. 10%,磁性铁占总铁的34. 56%。铁主要以磁铁矿和赤(褐)铁矿的形式存在,硫、磷含量较低。为实现"能抛早抛",对矿石块矿干选抛尾精矿进行高压辊磨—预选抛尾试验。结果表明,相比高压辊磨开路流程,闭路流程辊磨产品-1 mm粒级含量高31. 34个百分点,达63. 59%,粒度更细;闭路辊磨产品中磁粗选—强磁扫选粗粒湿式预选抛尾可获得产率82. 71%、TFe品位27. 28%、回收率93. 56%的预选精矿,抛除产率17. 29%、TFe品位8. 98%、回收率6. 44%的合格尾矿,抛尾效果明显,可有效降低后续磨选流程负荷和选矿成本。  相似文献   

20.
吴熙群  李成必  刘金贵 《矿冶》2002,11(3):35-38,21
某含磷磁铁矿石中磷和铁的品位都很低 ,且磁性铁矿物含量只占总铁的 60 %。矿石经磁滑轮预选可抛除 1/3的尾矿 ,预选粗精矿磨至 -0 0 74mm占 60 % ,经浮选可获得含P2 O53 7 2 8%的磷精矿。选磷尾矿通过磁选粗选、磁粗精矿再磨后磁选精选 ,可获得含铁为 65 2 1%的铁精矿 ,磁性铁回收率对原矿中磁性铁为 85 3 9% ,对磁滑轮预选粗精矿中磁性铁为 94 5 6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号