首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为探讨毛坪铅锌矿所采用的下向分层胶结充填采矿法采场结构参数的合理性,采用数值模拟手段对不同断面尺寸和不同埋藏深度的采场稳定性进行了计算,系统分析了充填体顶板及采场周边应力与塑性区等的变化规律。研究结果表明:随着进路跨度和采深的增加,进路四周拉应力值逐渐增大,当跨度超过5 m后,拉应力值已非常接近充填体抗拉强度;而当采深达到560 m时,拉应力范围几乎扩展到整个围岩,说明采场稳定性下降,存在拉破坏可能性。从本次计算情况看,在现有采深时(采深400~450 m),进路最大跨度不宜超过5 m;而如果维持3.5 m的进路跨度持续向下开采,则适用的最大采深应在600 m左右,否则采场的稳定性难以得到有效保证。  相似文献   

2.
白象山铁矿的水文地质条件复杂,采用分层进路充填法开采。利用FLAC3D模拟软件建立流固耦合模型,分析了采场跨度、进路宽度、分层高度和充填体类型对采场顶板稳定性的影响。对模拟结果的极差分析表明,采场跨度对采场顶板的最大沉降量、最大拉应力和塑性区破坏高度起决定性作用,其次是充填体类型、分层高度和进路宽度;最优方案为采场跨度30m,进路宽度10m,分层高度10m,用灰砂比1∶8的胶结尾砂进行充填。  相似文献   

3.
以贵州小坝磷矿为例,结合FLAC3D软件,进行采场回采过程数值模拟分析,并进行了跨度优化研究。结果表明:(1)开挖导致岩体中应力重新分布,采场顶底板出现拉应力,易发生拉伸破坏,拐角则出现显著的应力集中现象;(2)充填能够有效改善采场受力及变形情况;(3)采场跨度以20 m为宜,此时围岩稳定性较好且生产效率较高。  相似文献   

4.
某铁矿经过长期连续开采,开采水平逐渐加深.为了优化不同深度采场的结构参数,利用 FLAC3D 数值模拟软件对不同开采水平、不同矿房跨度下采场的顶板最大竖向位移和最大拉应力进行模拟分析,并基于 CRITICGTOPSIS综合贴进度评价模型,对不同设计方案进行综合评价.结果表明:开采水平和矿房跨度均为影响采场稳定性的关键因素,同一开采水平下,随充填体强度的减小和矿房跨度的增大,采场顶板最大竖向位移和最大拉应力均呈增大趋势,且充填体强度为主 导 因 素;经 过 综 合 贴 进 度 评 价 模 型 分 析 可 知,-470m水平、-530m 水平和-560m 水平矿房的最佳跨度分别为22m、20m 和18m,说明采场埋深越大,矿房跨度应越小.研究结果可为该铁矿深部采场结构参数设计提供参考.  相似文献   

5.
矿山开采随浅部资源的消耗而逐渐向深部发展,为了选取最优的采场参数及回采顺序,利用FLAC3D软件对某矿阶段空场嗣后充填采矿法在不同采场跨度和不同回采顺序条件下的采场稳定性进行了模拟分析。结果表明:跨度为16 m、18 m、20 m和22 m的一步骤采场开采后的应力、位移和塑性区位置分布基本相同,其中20 m和22 m跨度的采场在矿体上下盘出现较大的塑性区。二步骤回采矿柱时,跨度为18 m、20 m和22 m的矿柱采场的两侧充填体下部拉应力均超过充填体抗拉强度,会导致该区域充填体破坏。考虑现场实际情况,最终选取一步骤采场跨度和矿柱跨度均为16 m,最优回采顺序为“隔一采一”。  相似文献   

6.
采场结构参数及充填配比优化的FLAC3D数值模拟   总被引:1,自引:0,他引:1  
为了保证矿山安全高效开采,通过分析影响采场稳定性关键因素及破坏机理,应用数值模拟法对二步矿柱在不同结构参数和两侧不同充填配比开采条件的稳定性进行分析,优选出安全高效的一步采场充填配比和二步采场的结构参数。采用FLAC3D数值模拟,计算和分析在开采过程中,不同结构参数和两侧不同充填配比的采场顶板的应力、应力分布区域面积及位移变化特征,得出各不同方案的采场顶板稳定情况。结果表明:采场受两侧充填体配比的影响较为明显,一步采场灰砂比由1∶6改变到1∶8时,对二步采场的稳定性影响较小;灰砂比小于1∶8和采场宽度大于18 m时,采场顶板的拉应力和位移的变化率逐渐变大,采场的稳定性迅速降低。因此,综合矿山生产安全、高效及成本考虑,建议一步采场充填配比为1∶8、二步采场的宽度为18 m。  相似文献   

7.
白音呼布矿区井下开采已经进入深部,矿体多处于构造破碎带中,节理发育、地压作用显著,围岩等级差异较大,直接影响采场的稳定性。为了探究合理的采场跨度,确保井下矿产资源高效、安全开采,采用数值模拟方法对白音呼布矿区300m中段采场进路跨度及围岩稳定性进行研究,分析了不同采场跨度对围岩位移场与应力场变化及塑性区扩展规律的影响。根据数值模拟计算结果,以采场进路监测点位移曲线、应力变化和塑性区是否贯通为依据,确定井下Ⅲ级围岩采场安全跨度。研究结果表明:Ⅲ级围岩采场进路跨度超过6m后,顶板竖向位移和两帮水平位移显著增加,采场两进路塑性区完全贯通,确定Ⅲ级围岩采场进路的最优跨度为6m。  相似文献   

8.
厚大矿体分段空场嗣后充填采场结构参数优化研究   总被引:4,自引:2,他引:2  
采用合理的采场结构参数是控制地压危害实现矿体安全高效开采的重要措施。针对吴庄铁矿岩体条件,采用FLAC3D三维有限差分分析软件对24种不同方案的采场围岩应力、位移变化规律及塑性区分布情况进行了计算分析,得出顶板拉应力是影响该矿采场稳定性的重要因素。将顶板岩层所受的最大拉应力作为衡量采场稳定性的指标,绘出了采场跨度与顶板拉应力、采场长度与顶板拉应力关系曲线以及两者对顶板拉应力的联合影响曲面。在顶板厚度一定的情况下,采场顶板拉应力随着采场跨度的增大而增大,且增加幅度越来越大;随着采场长度增加顶板拉应力增加的幅度趋缓,特别是当采场长度增加到一定长度时,顶板拉应力趋于稳定。得到结论:采场稳定性不仅与顶板暴露面大小有关,暴露面形状对其影响也是至关重要的。优化采场顶板暴露面积形状是控制地压的重要手段之一,采用长条形顶板暴露面,能提高采场生产能力和保证回采的安全性。因此,对于该矿提出了“大盘区、小跨度”的设计理念。  相似文献   

9.
以司家营矿区Ⅲ号薄矿体为例,研究采用上向分层充填法开采薄矿体时,采场顶板厚度和空区跨度对采场矿柱稳定性的影响。根据采场结构、地质条件、矿岩特性、原岩应力等,运用FLAC3D数值模拟方法建立模型,计算不同顶板厚度和空区跨度情况下的应力场和位移场。结果表明,对于薄矿体,矿岩稳定性主要受空区跨度的影响,跨度越大,稳定性越低,而一定范围内的顶板厚度不会对采场稳定性产生大的影响。  相似文献   

10.
针对梅山铁矿塌落界线外矿体开采技术的特点,提出了采用分段空场嗣后充填法,分析了底部结构的布置和回采工艺特点等,并结合自然平衡拱理论,采用计算机仿真模拟技术,对分段空场嗣后充填法回采过程中的围岩应力、位移变化规律及塑性区分布情况进行了计算分析,揭示出顶板岩层拉应力是影响该采场稳定性至关重要的因素。将顶板岩层所受的最大拉应力作为衡量采场稳定性的指标,应用正交试验法对不同采场结构参数进行优化,得出梅山铁矿塌落界线外矿体采用矿房采场跨度14 m、矿柱采场跨度10 m和顶板厚度8 m的结构参数,能保证安全开采的需要。  相似文献   

11.
基于多孔介质流固耦合理论,以白象山铁矿下层局部疏干条件下的带压充填开采为原型,选取4线以北、7线以南"天窗"下部矿体的开采作为评价地质模型,建立了渗流条件下矿山"采场围岩系统"的三维数值模型。并根据正交试验设计的方法制定了不同采场跨度、进路宽度、分层开采高度和充填体类型的四因素三水平的9个采场结构参数开采模拟方案,选取顶板最大沉降量、顶板最大拉应力和顶板塑性区最大破坏高度作为评价采场顶板稳定性的指标,通过对不同方案模拟结果的分析,确定了各采场结构参数因素对顶板稳定性影响作用的大小以及合理的开采方案。  相似文献   

12.
采场结构参数的优化对提高矿山生产效率、降低生产成本和保证矿山生产安全起着重要的作用。根据某矿山开采技术条件,针对采矿方法的采场结构参数,采用FLAC数值模拟软件模拟了不同采场跨度条件下的最大拉应力、竖直位移、塑性破坏区范围的大小,确定采场跨度最优为10 m,为矿山的安全高效生产提供依据。  相似文献   

13.
贵州开磷矿业公司用沙坝矿主体为缓倾斜矿体,采用机械化盘区分段充填采矿法开采,通过研究采场跨度与顶板稳定性之间关系确保了作业人员安全和稳定生产.建立合理矿山开采力学模型后,对不同跨度采场在未支护方案下进行数值模拟分析表明,采场整体位移变化基本服从近对称分布;靠近开挖边界处围岩位移最大,距开挖边界越远,围岩位移越小,且移动方向均指向采空区;采场跨度在20m以内,采场顶板不发生破坏;当超过25m以上时,采场顶板出现较大拉应力,顶板开始发生破坏.  相似文献   

14.
为确保三山岛金矿顶底残柱安全高效回采, 采用理论力学与数值模拟对散体下顶底残柱开采过程进行了稳定性分析。建立了理论力学模型, 应用修正普氏拱理论计算了进路顶部荷载, 采用数学力学解析法对不同规格的进路在开挖过程中的承载层进行了内力分析, 得出了进路开采半宽和承载层厚度之间的拟合函数, 进而得出了不同跨度进路顶板需预留原岩的最小安全厚度。应用ABAQUS软件对不同规格进路的开挖过程进行了塑性变形和顶板应力分析, 得出了进路的合适采高及预留原岩的安全厚度, 以及不同跨度的进路顶板冒落规模, 从而得到采场进路宽和高分别为1.5 m和1.6 m。将理论力学分析和数值模拟分析的结果应用于三山岛金矿残柱的开采中, 并对采场沿脉巷道进行位移监测, 能确保试验采场安全生产。  相似文献   

15.
针对充填体下无底柱分段崩落法的两种采场结构参数,利用FLAC3D软件对回采进路稳定性进行了数值模拟分析。发现开掘回采进路后,随着生产的推进,围岩顶底板与两帮受到拉应力的区域逐渐扩大,压应力集中区域有从进路顶、底角位置处向分段间深部围岩转移的趋势,且分段高度越小,回采进路受到相邻分段开采的影响越大。回采不同分段矿石时,变形量曲线有明显改变,故矿石回采对进路稳定性存在一定影响。底板上鼓量、顶板下沉量受开采扰动较大,两帮收敛量受开采扰动的影响较小,故在实际生产过程中,进路两帮的安全性可能优于进路顶底板。因此在生产中,要注意加强对进路顶、底板的监测,并采取支护措施增强进路顶、底板的支护。  相似文献   

16.
针对谦比西铜矿矿体与近矿围岩稳定性差,受地压影响严重,进路屡遭破坏等问题,应用2D-数值分析软件,对不同开挖方式下岩体应力场变化规律和分布特征、卸压过程的力学机制、采场结构的及参数优化进行了数值模拟研究。结果表明,沿脉布置1条进路,增大空区跨度和减小空区高度的采场结构方式可以实现卸压开采的目的。在谦比西铜矿矿体所具备的倾角厚度条件下,进路布置在距矿体下盘6 m处,回采后可使下分段进路处的垂向应力降低18%,能够满足卸压及经济效益2方面的要求。  相似文献   

17.
山金白音呼布矿区井下开采已经进入深部,岩体复杂的应力环境和地质环境对采场围岩稳定状态带来严峻考验,井下围岩稳定性和采场跨度的确定严重影响矿山的安全生产。基于前期岩体质量分级研究结果,采用Mathews稳定图法对不同级别围岩进行采场安全跨度的研究,得到了[BQ]分级法、RMR法和Q系统法所对应的各级围岩的最大安全跨度。根据理论计算跨度,对矿区300 m中段采场进路进行数值模拟分析,模拟结果证实了理论计算的可靠性。结合岩体质量分级的图表法确定的采场安全跨度在矿山开采中得到了成功应用,该方法对复杂围岩环境中采场参数的设计具有可行性。  相似文献   

18.
云南某矿山矿体赋存条件复杂,矿岩破碎、松软,加之后期转型采用无轨设备开采,导致采场巷道断面增大,原有的采矿工艺和采场参数已不再适用。为保证开采过程的安全,找出适合矿山生产的合理采场结构参数,研究采用3D-σ有限元模拟软件建立采场三维模型,设计不同跨度直接顶板的留点柱、留连续矿柱采场结构形式,对不同采场结构形式下矿岩的应力、安全率、塑性区进行模拟分析。结果表明:采用留点柱的采场形式时,采场内点柱尺寸不应小于2 m,矿房跨度控制在4 m为宜;采用留连续矿柱的采场形式时,采场结构参数建议留4 m宽连续矿柱,矿房跨度为5 m,采用C20混凝土进行进路式充填回采。结合采场模拟分析及矿山实际生产现状,建议采用留连续矿柱的开采方案。后续现场试验证明,该方案不仅能够保证采场结构的稳定性,达到矿山安全开采的目的,而且能有效降低矿石的损失贫化,提高矿山的经济效益。  相似文献   

19.
复杂矿体条件下的采矿结构参数是矿山合理安全开采的关键。以卧虎山矿29线附近矿体为研究对象,运用3DMine-Midas-Flac3D耦合建模数值模拟技术,精细化构建三维实体和网格模型,考虑采场跨度和高度,均匀设计15组试验方案,以岩体力学参数的中间值为计算基础参数,获得不同采场跨度和高度下采场的拉压应力、位移和塑性区分布规律,从复杂条件的参数区间自适应优化采场结构参数。研究结果表明:①矿体开挖后,采空区顶底板出现了拉应力集中,特别是在两个采空区之间所留下的间柱之间、回采采场中间的矿柱是塑性区集中区域;②分析各方案中一步骤采场回采完毕后采空区的稳定性状况,确定方案七和方案十二的采场稳定性较好;③对采场不同结构参数下自适应性表征分析,得出方案七的自适应性更强,为最佳采场结构参数,即采场长30m,跨度12. 5m,高度12. 5m,预控顶高度3. 5m。  相似文献   

20.
地下采场围岩及覆岩稳定性是影响矿山安全生产的主要因素之一。为探索地下开采过程中不同倾角矿体采场覆岩的破坏失稳特征,采用PFC2D软件建立倾角20°和50°矿体模型,模拟分析开采过程中采场覆岩的内部应力变化和裂隙扩展规律,并与相似模型进行对比,结果表明:(1)两种矿体模型在分步开挖过程中,开采空间较小时,覆岩均会经历卸荷-回升-波动-稳定4个阶段,但倾角越小,离采场相同距离覆岩处内部应力稳定时间越长,越容易发生二次卸荷;(2)开采空间较小时,对应顶板围岩和邻近覆岩产生少量微裂隙,且裂隙扩展呈拱形,有贯通采场上端和下端的趋势。多步回采之后,各采场围岩及覆岩之间的裂隙相互贯通,并逐步向地表扩展,并导致采场失稳;(3)矿体模型倾角越小,覆岩受拉区域越大,受拉作用也更明显,导致更多裂隙的产生,裂隙的扩展速率越快,贯通也越快,倾角20°模型开采对围岩及覆岩的稳定性影响更大。该研究结果可为地下开采过程中矿山开采地压控制、采场失稳和采空区塌陷等技术难题提供理论参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号