首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
河北某普通磁铁矿TFe品位为65.25%,矿石性质结构简单,具有制备超纯铁精矿的潜力。研究采用多元素及X射线衍射图、物相分析等方法对原矿进行了工艺矿物学研究,并在此基础上对其进行了提纯试验。结果表明,原矿经过弱磁选粗选后,在磨矿细度-0.038 mm占85%的条件下经弱磁选再选、磁选柱精选得到TFe品位为71.31%的磁选柱精矿以及TFe品位68.12%、产率为3.32%的磁选柱铁尾矿。通过进一步考察药剂制度和工艺流程对铁矿精矿品位、回收率等选别指标的影响,确定了合适的药剂制度。而后磁选柱精矿经1粗3精反浮选降硅工艺试验流程,最终可获得含TFe品位71.95%、综合回收率为80.50%的超纯铁精矿,浮选尾矿TFe品位68.17%符合普通铁精矿标准。通过对选别产品进行试样化学成分分析及残余药剂测定,进一步证明该工艺流程可以实现超纯铁精矿的制备。该工艺在抛尾率为10.79%条件下,将原矿样的73.04%转化为超纯铁精矿,对这一地区超纯铁精矿的制备具有重要的指导意义,也为国内其他地区磁铁矿制备超纯铁精矿的研究提供了一定的参考价值。  相似文献   

2.
青海某磁铁精矿铁品位达65.46%,主要杂质Si O2、Al2O3含量分别为5.77%和2.09%,主要脉石矿物为石英、绿泥石、云母、长石、钛铁矿等,+75μm粒级铁品位仅为45.07%,主要以磁铁矿连生体形式存在。为确定以该磁铁精矿为原料生产超纯铁精矿的可行性及合理选矿工艺,进行了选矿试验研究。结果表明,试样在磨矿细度为D90=21.39μm的情况下,进行1次弱磁选(23.87 k A/m)、1次弱磁扫选(318.22 k A/m),弱磁选精矿以苛性淀粉为抑制剂、十二胺为捕收剂进行1粗1精反浮选,反浮选尾矿与弱磁扫选精矿合并,最终获得铁品位为71.82%,铁回收率为61.86%,Si O2、Al2O3含量分别为0.24%、0.18%的超纯铁精矿,以及铁品位为68.14%、铁回收率为36.74%的普通铁精矿。  相似文献   

3.
邹玄  张晋霞  牛福生  于浩  刘亚 《金属矿山》2016,45(7):117-120
河北某地磁铁矿石铁品位为35.94%,磁性铁占总铁的90.40%,有害元素硫、磷含量均较低。为了提高矿山企业的经济效益,提高产品的市场竞争力,对矿石进行了超纯铁精矿生产工艺研究。结果表明:①矿石在一段磨矿细度为-0.074 mm占64.16%、弱磁选1磁场强度为39.81 kA/m、二段磨矿细度为-0.037 mm占80.59%、弱磁选2磁场强度为19.90 kA/m情况下,可获得铁品位为69.57%、铁回收率为96.03%的弱磁选铁精矿。②弱磁选铁精矿在给矿浓度为20%、悬振锥面选矿机分选面转动速度为1.23 r/min、盘面振动频率为390次/min、给矿速度为0.40 t/h、冲洗水流速为1.08 m3/h的情况下2次精选,可获得全铁品位为71.67%、SiO2含量为0.19%、铁回收率为84.89%的超纯铁精矿,以及铁品位为62.90%、铁回收率为23.10%的普通铁精矿,总铁回收率高达96.03%。  相似文献   

4.
以某铁品位为64.48%的普通铁精矿作为原料进行了超纯铁精矿的制取试验,原矿经预选可抛除部分单体脉石,预选精矿细磨至-0.030 mm 90%后,经弱磁选—电磁精选—反浮选提纯可获得铁品位为71.91%、Si O2含量为0.23%、酸不溶物为0.21%的超纯铁精矿;且该生产工艺可用于大规模工业生产,得到的产品满足粉末冶金、磁性材料、化工、环保、保鲜等领域的质量要求。  相似文献   

5.
喻明军 《现代矿业》2023,(1):163-167
为探究某赤铁矿精矿制备超纯铁精矿的可行性进行了选矿工艺试验,该赤铁矿精矿为磁赤混合矿去除磁铁矿后的产物,全铁品位为62.74%,通过考察磨矿细度、精选段抑制剂和捕收剂用量对赤铁矿精矿品位、回收率等选别指标的影响,确定了合适的药剂制度和工艺流程。试验结果表明:赤铁矿精矿经磨矿—脱泥—1粗2精反浮选,可获得全铁品位68.32%的超纯铁精矿,浮选作业回收率为78.67%。  相似文献   

6.
7.
孔德翠  刘杰  张淑敏  李艳军 《矿产综合利用》2022,45(5):131-135, 147
某铁矿石铁品位是56.36%,主要以赤褐铁矿的形式存在,脉石矿物主要是石英和铝土矿。对该铁矿石采用了悬浮磁化焙烧—磁选工艺实验研究,在给料粒度为-0.074 mm 56.11%,焙烧温度为560℃,总气量为500 mL/min、CO浓度为30%,还原时间为15 min的条件下进行焙烧实验,然后将焙烧产品磨至-0.074 mm 95%,在磁场强度90 kA/m,选别时间5 min的条件下进行弱磁选实验,获得了铁品位64.42%,铁回收率94.49%的高品位铁精矿,为处理难选铁矿石提供了解决办法。  相似文献   

8.
以硫酸与氟化钠混合溶液为浸出剂,采用常压浸出工艺处理普通磁铁精矿制备超纯铁精矿。考察了浸出温度,浸出时间,硫酸浓度,氟化钠浓度,浸出液固比对铁精矿品位、回收率以及二氧化硅脱除率的影响。通过浸出前后主要化学成分对比表明:以硫酸与氟化钠混合液为浸出剂,可以有效除去杂质,提高铁精矿品位,在未加入氟化钠时,主要发生的是碱性氧化物的简单酸溶反应,二氧化硅脱除率较低,铁精矿品位提高不高。加入氟化钠有效可以除去SiO_2,随着氟化钠添加量的增加,铁精矿品位不断提高,同时二氧化硅脱除率明显提高,但氟化钠添加量不宜过多。此外,铁精矿品位浸出时间和浸出液固比的增大而提高,浸出温度不宜过高。浸出过程最佳的条件为温度60℃,浸出时间60 min,硫酸浓度60 g/L,氟化钠浓度12 g/L,液固比3:1。在此条件下SiO_2脱除率为70.53%,可以得到品位71.82%,回收率92.78%的超纯铁精矿。  相似文献   

9.
本试验以TFe品位66.72%、SiO_2含量4.56%的河北某铁矿铁精矿为原料,进行了制备超级铁精矿试验研究。试验结果表明,磨矿-磁选-磁浮选工艺的分选指标较优,在磨矿细度为-0.074mm含量占93.48%,弱磁选磁场强度为80kA/m,磁浮选在温度为室温25℃、磁场强度25kA/m、pH值为7、HY-9捕收剂用量80g/t、矿浆浓度为30%的条件下,获得了TFe品位72.33%,回收率79.81%,酸不溶物含量0.15%的超级铁精矿。  相似文献   

10.
河北某铁矿石铁品位为34.52%,主要杂质Si O2含量为43.78%,Al2O3、Mg O含量分别为2.18%、1.62%,矿石中的铁主要赋存在磁铁矿中,占总铁的92.87%,另有少量的铁赋存于硅酸铁、氧化铁和碳酸铁中。为确定该矿石生产超级铁精矿的工艺流程,进行了选矿试验。结果表明,矿石在一段磨矿细度为-0.074 mm占50%的情况下经1次弱磁粗选1次磁选柱精选,磁选柱精选精矿二段磨矿至-0.038 mm占95%的情况下经1次弱磁精选1次反浮选(捕收剂YS-3用量为100 g/t)流程处理,最终获得铁品位为71.62%、铁回收率为73.47%、Si O2含量为0.19%、酸不溶物含量为0.24%的低杂质合格超级铁精矿,以及铁品位70.07%、铁回收率为18.92%的普通铁精矿。  相似文献   

11.
以山东某铁品位为66.12%的普通铁精矿为原料,以磁选柱为主要分选设备,进行了超纯铁精矿的制备试验。考查了普通铁精矿直接磁选流程、-0.074 mm粒级磁选流程和磨矿—磁选流程的分选效果,最终确定了分级—磨矿—弱磁粗选—磁选柱精选的工艺流程,获得了全铁品位为71.64%、回收率为81.87%的超纯铁精矿及合格品位的尾矿。  相似文献   

12.
超级铁精矿作为一种高附加值的新型材料,具有巨大的发展潜力。弓长岭某磁铁矿TFe品位45.62%,SiO2是其主要的脉石成分,含量为33.21%,有害元素P、S含量较低。原矿中的铁主要赋存在磁铁矿中,占全铁的95.05%。矿石中磁铁矿粒度较粗,主要分布在+74μm,分布率为82.37%。试样中磁铁矿主要以单体形式产出,部分微细粒石英以包裹、反包裹和细脉状嵌布于磁铁矿中,较难完全解离。为实现该矿石的高值化利用,开展了超级铁精矿制备工艺试验研究。试验结果表明,采用阶段磨矿—阶段磁选—反浮选工艺处理该磁铁矿石,在一段试样磨至-0.074mm含量为65%,二段试样磨至-0.025mm含量为90%,反浮选工艺中粗选和精选的捕收剂用量均为25g/t的工艺参数下,可以获得TFe品位72.35%、回收率为81.02%、SiO2含量为0.17%、酸不溶物为0.19%,其它杂质含量微量的高品质超级铁精矿,以及TFe品位71.37%、回收率为6.07%的高纯铁精矿和TFe品位60.26%、回收率为6.71%的普通铁精矿,为磁铁矿的高附加值和梯级化利用提供了技术依据。  相似文献   

13.
为了确定抚顺某磁铁矿石生产超级铁精矿的工艺流程进行了选矿试验。试验采用高压辊磨闭路辊压(湿筛)—粗粒中场强磁选—磨矿分级—弱磁选—预先分级—磨矿分级—弱磁选—浮选流程处理。在高压辊磨机工作压力为8.5 MPa、一段磨矿细度为-0.075 mm占65%,高品位铁精矿高频细筛筛孔宽为0.075 mm,塔磨再磨细度为-0.038 mm占90%,高纯铁精矿1粗2精阳离子反浮选,捕收剂十二胺分段添加量为16.37+8.18+3.27 g/t情况下,可获得:全铁品位为68.01%、全铁回收率为86.21%的高品位铁精矿;全铁品位70.95%、全铁回收率为42.32%的高纯铁精矿,全铁品位为65.40%、全铁回收率为43.89%的副产铁精矿;全铁品位为71.81%、全铁回收率为17.93%、酸不溶物含量0.14%的超级铁精矿,全铁品位为67.08%、全铁回收率为68.28%的副产铁精矿。  相似文献   

14.
以含TFe 67.70%,SiO2 4.88% 的普通铁精矿为原料,采用磨矿、弱磁选-磁重选-反浮选工艺,可生产出含TFe 72.02%,SiO2 0.27% 的超纯铁精矿,同时可获得TFe 品位70.57%的普通铁精矿,TFe 总回收率达91.96% 。  相似文献   

15.
李涛 《矿冶》2021,30(6)
为得到高品质超级铁精矿,对某铁精矿进行了“磨矿—磁选—浮选”的选矿试验研究。结果表明,采用立磨机磨矿,在磨矿细度为-0.037mm占95%,磁场强度为62.4kA/m下进行磁选,并对磁选精矿在碳酸钠用量为2000g/t、高温苛化淀粉用量为200g/t、酸化十二胺用量为120g/t条件下进行浮选,最终可获得产率为49.50%,铁品位为72.24%,二氧化硅含量为0.08%,其它杂质微量的高品质超级铁精矿。  相似文献   

16.
为了简化超纯铁精矿的制备工艺,提高企业经济效益,针对河北某地磁铁矿进行了超纯铁精矿制备的试验研究。研究表明,原矿全铁品位为35.59%,主要以磁铁矿形式存在,分布率为91.07%,均匀地分布在各个粒级中。经过阶段磨矿-弱磁选以及磁选柱两次精选流程,可获得全铁品位为71.79%,回收率为77.99%的超纯铁精矿。  相似文献   

17.
针对山西某区域铁精矿,分别采用单一弱磁选、阳离子反浮选和阴离子反浮选进行对比试验,最终确定采用单一弱磁选方法(磨矿+一粗一精)即可获得优质产品。在磨矿细度为-0.074 mm 90%的条件下,成功获得了产率95.03%、铁品位71.88%、回收率98.89%的超纯铁精矿。该流程工艺简单,操作方便,为该区域铁精矿进一步深加工提供了参考依据。  相似文献   

18.
河北某磁铁矿石铁品位为38.54%,主要有用矿物为磁铁矿,为开发利用该矿石,对其进行了选矿试验研究。结果表明:原矿经干式磁选抛尾—湿式粗粒磁选抛尾—磨矿—1粗1精弱磁选流程选别,可获铁品位65.67%、铁回收率83.95%、磁性铁回收率96.09%的铁精矿,为开发利用该矿石提供了技术依据。  相似文献   

19.
介绍了武汉科技大学自行设计的磁团聚重选机对金山店铁矿选矿厂弱磁选精矿进行分选的试验结果。经试验结果表明,在给矿速度、给水量、排矿速度和分散剂用量等的最佳条件下,获得了产率为50.30%、全铁品位70.48%、硅杂质含量小于0.5%的超纯铁精矿。  相似文献   

20.
为了探究用湖北某高硅低铁型磁铁矿石加工超级铁精矿的可能性,进行了选矿工艺试验。结果表明,矿石采用高压辊磨机闭路辊压—弱磁选干抛—4阶段磨选—电磁淘洗机精选—反浮选工艺处理,获得了铁品位为71.82%、回收率为55.82%、SiO2含量为0.21%的超级铁精矿,铁品位为68.53%、回收率为12.77%、SiO2含量为1.60%的特级铁精矿,以及铁品位为66.70%、回收率为11.07%、SiO2含量为3.76%的普通铁精矿,全流程总回收率达79.66%,为矿山选厂设计提供了技术依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号