首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
谢园明 《金属矿山》2018,47(1):102-106
伊朗某金矿石金品位为7.05 g/t,主要金矿物为裸露及半裸露金,主要载体矿物为黄铁矿,自然金的粒度变化范围很大,细粒明金(0.01~0.06 mm)占81.15%,微粒金占18.85%。为了确定该矿石的高效选矿工艺,进行了选矿试验研究。结果表明:(1)阶段磨矿、阶段选别工艺可以有效减少粗颗粒金在浮选过程中的跑尾,避免金矿物在磨矿中出现过粉碎,同时有利于不均匀细粒载金矿物单体解离。(2)跳汰机对-200目占65%的磨矿产品进行重选,可预先产出部分合格金精矿,充分体现了能收早收、分级分选理念。(3)矿石采用阶段磨矿—跳汰重选—阶段浮选工艺流程处理,可获得金品位为81.43 g/t、金回收率为45.52%的重选精矿,金品位为56.12 g/t、金回收率为44.99%的浮选精矿,综合精矿金品位为66.52 g/t,金回收率为90.51%。(4)金品位为0.74 g/t的重浮流程试验尾矿采用氰化浸出工艺处理,金浸出率达62.16%,最终浸出渣的金品位仅为0.28 g/t。  相似文献   

2.
杨书春  吴凡  刘广才 《现代矿业》2015,(1):83-85,160
通过对伊朗某全铁品位为51.30%,磁性铁品位为45.11%的高品位磁铁矿进行选矿试验研究,经试验分析确定对原矿采用单一弱磁选工艺回收。小型试验结果表明:原矿经阶段磨矿—弱磁选试验流程分选后,可获得产率为63.34%、全铁品位为68.18%,全铁回收率为84.15%的铁精矿。  相似文献   

3.
4.
安徽某铁矿石属低硫磷贫磁铁矿石,磁性铁占总铁的73.41%。为高效开发利用该矿石资源,采用磁选工艺进行了选矿试验。结果表明,用高压辊磨机破碎至3~0 mm的矿石经湿式中场强抛尾,中场强粗精矿磨至-200目占50%—1次弱磁选—二段磨至-200目占85%—2次连续精选流程处理,最终可获得铁品位为66.56%、铁回收率为76.05%、磁性铁回收率为96.80%的铁精矿,该工艺流程与原矿直接阶段磨选流程比较,具有显著的节能减排、降本增效效果。  相似文献   

5.
为了提高新疆某铁矿的回收率,在对其原矿石性质系统研究的基础上,在磨矿细度为-0.074 mm 30%,采用1粗1扫弱磁选工艺流程,获得了铁精矿品位为68.32%,铁回收率为83.12%,尾矿磁性铁含量为0.42%,精矿磁选铁回收率为97.15%的选矿指标。通过优化条件试验,为现场生产提供了技术指导。  相似文献   

6.
河南某铁矿石中的铁主要以磁铁矿形式存在,为确定该矿石的高效、低耗开发利用工艺,进行了选矿试验研究。结果表明,采用粗磨弱磁粗选—再磨弱磁精选+磁场筛选机精选流程比采用粗磨弱磁粗选—再磨单一弱磁精选流程,可以在较粗的磨矿细度下获得更高品位的铁精矿。因此,磁场筛选机工艺是高效节能新工艺,具有广阔的应用前景。  相似文献   

7.
安徽某低品位磁铁矿石铁品位为21.20%,铁主要以磁铁矿的形式存在。为回收利用其中的铁,进行阶段磨矿—弱磁选选别试验,在一、二段磨矿细度分别为-0.076 mm 50%、85%,一段弱磁选,二段弱磁选粗、精选磁场强度分别为159.15,111.41,95.49 k A/m时,最终可获得产率为20.91%、铁品位为64.15%、回收率为63.43%的铁精矿,尾矿含铁9.77%,分选效果较好。原矿赤褐铁含量仅11.04%,探索试验结果表明,尾矿不具有再选价值。试验结果可为该矿石的合理开发利用提供依据。  相似文献   

8.
巴西某铁矿石氧化程度较高,主要为赤铁矿,铁品位为57.74%。矿石粒度较细,泥化严重。选矿试验结果表明,原矿预先筛分后,-0.175 mm与+0.175 mm磨矿(-0.074 mm 59.80%)产品合并进行弱磁选(96 kA/m)—强磁选(800 kA/m)试验,可获得产率81.54%、品位64.97%、回收率91.46%的铁精矿,指标较好,建议该流程作为该矿石的选别流程。  相似文献   

9.
牛埃生 《现代矿业》2013,29(10):104
新疆某铁矿石中磁性铁含量较高,但铁矿物嵌布粒度较细,对该矿样进行磁选—反浮选试验获得了铁品位为63.02%、回收率为70.17%的铁精矿,铁精矿浮选作业回收率为81.77%。  相似文献   

10.
某镜铁矿选矿厂原采用连续磨矿—单一强磁选流程,选别指标不理想,为此对其进行了阶段磨矿、强磁—反浮选流程试验研究,取得了精矿铁品位49.78%、回收率76.68%的良好选别指标。试验结果表明,磨矿粒度是影响选别指标的主要原因,阳离子反浮选对提高铁精矿品位和回收率有利。  相似文献   

11.
分析了某贫锰、铁矿石的工艺矿物学性质,围绕选矿开展了摇床选别试验。试验结果表明,各项技术指标均达到了预期的要求,经济效益明显提高。  相似文献   

12.
针对南非某铁矿石进行选矿工艺技术研究。试验结果表明,在磨矿细度-0.074 mm占70%,磁场强度为79.557 kA/m,经过两次磁选,可获得产率88.46%,品位65.96%,回收率98.30%的铁精矿。  相似文献   

13.
袁帅  李艳军  刘杰  刘双安 《金属矿山》2015,44(11):62-65
采用磨矿-弱磁选-中强磁选-中强磁选精矿再磨后反浮选工艺流程对辽宁某深埋铁矿石进行了选矿工艺研究。结果表明,对铁品位为29.22%、赤褐铁占总铁67.76%、脉石矿物以石英为主的试样,在磨矿细度为-0.043 mm占75%的情况下,经1次弱磁选(磁场强度为95.50 kA/m)。1次中强磁选,中强磁选精矿再磨至-0.038 mm占90%后经1粗1精3扫、中矿顺序返回反浮选,弱磁选精矿与反浮选精矿合并为最终精矿,其铁品位为67.26%、铁回收率为84.68%。试验指标理想,工艺流程简单,可作为该铁矿石资源开发利用的依据。  相似文献   

14.
某镜铁矿选矿厂原采用连续磨矿—单一强磁选流程,选别指标不理想,为此对其进行了阶段磨矿、强磁—反浮选流程试验研究,取得了精矿铁品位49.78%、回收率76.68%的良好选别指标。试验结果表明,磨矿粒度是影响选别指标的主要原因,阳离子反浮选对提高铁精矿品位和回收率有利。  相似文献   

15.
胡洋  张梦雨  陈飞  刘佳毅 《现代矿业》2019,35(8):116-119
试验用极贫铁矿石铁品位为13.90%,有害元素磷含量为0.86%,磁性铁占总铁的46.04%,主要以磁赤铁矿、磁铁矿形式存在,磁赤铁矿、磁铁矿以半自形变晶结构为主,嵌布粒度大于0.1 mm的超过75%,约有5%的磁赤铁矿的嵌布粒度小于0.05 mm。为确定该矿石的开发利用工艺,进行了选矿试验研究。结果表明,矿石采用3阶段磨选流程处理,在一段磨矿细度为-0.076 mm占38.5%、弱磁选磁场强度为115 kA/m,二段磨矿细度为-0.076 mm占74%、弱磁选磁场强度为115 kA/m,三段磨矿细度为-0.043 mm占92%、弱磁选磁场强度为115 kA/m的情况下,获得了铁品位为60.12%、铁回收率为40.22%的铁精矿,铁精矿硫、磷含量均较低,满足产品质量要求。  相似文献   

16.
孙英明 《矿业工程》2015,13(2):28-30
在对甘肃某铁矿石进行工艺矿物学研究的基础上,对矿石进行不同条件的磁选、反浮选工艺技术参数研究,采用阶段磨矿、磁选、反浮选工艺对该矿石进行工艺流程实验研究,为开发甘肃铁资源提供技术依据。  相似文献   

17.
新疆某铜铁矿石铜品位1.52%,全铁品位20.20%,70.07%的铜以硫化铜的形式存在,氧化铜中铜占29.86%,磁性铁仅占总铁的29.36%。为确定铜、铁回收适宜的选矿工艺流程,采用先浮铜再磁选铁的原则工艺流程进行选矿试验。结果表明,在磨矿细度-0.074 mm占80%、活化剂硫化钠用量500 g/t、捕收剂丁基黄药用量150 g/t、起泡剂2#油用量30 g/t的条件下,原矿经1粗2精2扫闭路浮选铜—浮铜尾矿1次弱磁选选铁流程处理,可获得铜精矿品位23.52%、回收率90.85%和铁精矿品位67.56%、回收率32.12%的良好指标,试验结果可作为该铜铁矿石高效开发利用的技术依据。  相似文献   

18.
伊朗某磁铁矿石铁品位为58.60%,硫、磷含量较低,86.76%铁以磁铁矿的形式存在。矿石粒度较细,-2.36 mm粒级占54.00%。为确定该矿石合理的选矿工艺流程,进行选矿试验。结果表明,原矿预先分级—+2.36mm粗粒磨矿(-0.074 mm18.20%)—1次弱磁选—-2.36 mm细粒级直接弱磁选流程可获得TFe品位66.93%、回收率91.22%的合格铁精矿; 1粗1精螺旋溜槽重选可有效回收弱磁尾矿中铁,重选精矿与弱磁精矿合并后仍满足铁精矿合格标准。在此基础上,根据生产要求,该工艺可作为该矿石的推荐选矿流程。  相似文献   

19.
河北某极贫铁矿石铁品位仅15.69%,铁的赋存形式主要为磁铁矿(50.16%)。为了给该矿石的开发提供技术支撑,采用干式预选-阶段磨矿-阶段弱磁选和干式预选-阶段磨矿-细筛-阶段弱磁选流程就矿石中磁铁矿的回收进行了选矿试验,分别获得了铁品位为66.12%,铁回收率为50.14%和铁品位为66.20%,铁回收率为49.87%的铁精矿。根据试验结果,结合国内选矿实践,将干式预选-阶段磨矿-细筛-阶段弱磁选流程作为推荐流程。  相似文献   

20.
陈东龙 《现代矿业》2013,29(8):178-179,181
国外某低铜富铁矿石主要有价元素为铜、铁,为合理高效利用该矿石,进行了选矿工艺试验。结果表明:采用先浮后磁的工艺流程可以获得铜品位为18.12%、回收率为82.99%的铜精矿,铁品位为68.49%、回收率为91.60%的铁精矿。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号