首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ADAMs: focus on the protease domain   总被引:1,自引:0,他引:1  
HYPOTHESIS: Absent or reduced expression of schwannomin/merlin is associated with tumorigenesis of sporadic schwannomas. BACKGROUND: The neurofibromatosis type 2 (NF2) gene frequently is mutated in sporadic vestibular schwannomas. The protein product of the NF2 gene is called schwannomin or merlin. Little is known about the mutated forms of schwannomin/merlin present in schwannomas. METHODS: To investigate further the role of schwannomin/merlin in schwannoma tumorigenesis, immunoblotting experiments were performed. Antischwannomin/merlin-specific antibody that recognizes amino terminus of the protein was used to determine the expression levels of schwannomin/merlin in 16 sporadic vestibular schwannomas, 1 NF2-related vestibular schwannoma, and 5 spinal schwannomas. RESULTS: The antibody detects a protein of approximately 66 kDa in the Triton X-100-insoluble fraction of tumors. The expression of schwannomin/merlin was severely reduced, <35% of control, in 11 (50%) of 22 sporadic schwannomas and in 1 NF2-related vestibular schwannoma. The intensity of 66-kDa schwannomin/merlin band was moderately reduced, from 35-60%, in 7 (32%) of 22 schwannomas compared to the expression levels found in the human brain. Truncated forms of schwannomin/merlin were identified in three tumors with moderately reduced schwannomin/merlin. CONCLUSIONS: These results provide new evidence that inactivation of schwannomin/merlin is an important factor in tumorigenesis of sporadic schwannomas.  相似文献   

2.
Monosomy of chromosome 22 or deletions of 22q have been described in meningiomas and astrocytic tumors, the incidence of which is increased in Type 2 neurofibromatosis. Recently, the gene for neurofibromatosis Type 2 (NF2) has been identified at Chromosome 22q12, and a tumor suppression role has been suggested. Because there have been only a few studies of the NF2 gene on central nervous system tumors other than vestibular schwannomas, we investigated the potential role of NF2 as a tumor suppressor gene in a group of sporadic meningiomas and astrocytomas. Forty-four tumors (26 meningiomas and 18 astrocytic tumors of different grades) were screened for NF2 mutations for the entire 17 exons by the polymerase chain reaction-single-strand conformation polymorphism method. In addition, 37 tumors and their respective constitutional deoxyribonucleic acid were analyzed for loss of heterozygosity of 22q alleles by four polymorphic microsatellite markers. Seven inactivating mutations were found in Exons 4, 5, 6, and 10 in 7 of 26 (27%) meningiomas, but none were found in astrocytic tumors. Altogether, 69% of meningiomas and 20% of astrocytic tumors revealed a loss of heterozygosity of 22q markers. All tumors with NF2 mutations showed concurrent loss of alleles on 22q, thus fulfilling Knudson's criteria for tumor suppressor genes in meningiomas. We conclude that inactivation of the NF2 gene is involved in the pathogenesis of a proportion of meningiomas but not in astrocytic tumors. Because many meningiomas and some astrocytic tumors had allelic loss of 22q but intact NF2, there is a possibility that other tumor suppressor genes exist on 22q and may be involved in the pathogenesis of central nervous system tumors.  相似文献   

3.
Epithelioid sarcomas are soft tissue tumors with an indolent, but potentially aggressive, clinical behavior. Distinction from other benign and malignant entities may be a diagnostic dilemma. In this study, we evaluate the presence of loss of heterozygosity (LOH) of chromosome 22q in tumor DNA from 13 epithelioid sarcomas, four epithelioid angiosarcomas, and two epithelioid hemangioendotheliomas, and investigate its possible role in diagnosis. LOH was detected in 6 of 10 (60%) of the informative epithelioid sarcomas. No allele loss was detected in the informative vascular tumors, three angiosarcomas, and two hemangioendotheliomas. Chromosome 22q carries the locus of a tumor suppressor gene, the neurofibromatosis 2 (NF2) gene, which has been shown to be lost or mutated in some NF2-related tumors, sporadic meningiomas, and vestibular schwannomas, as well as a few other tumors. Our data suggest that a region of chromosome 22q may be the locus of a tumor suppressor gene involved in the tumorigenesis of these neoplasms. Genetic alterations of yet-unknown tumor suppressor genes in this region, or even the NF2 tumor suppressor gene, may play a role in epithelioid sarcomas tumorigenesis. The fact that LOH was only detected in epithelioid sarcomas and not in the vascular tumors studied suggests a possible role for this marker in diagnosis.  相似文献   

4.
Neurological tumours are common neoplasms of both adults and children. Recent studies have begun to delineate the genetic abnormalities that underlie such tumours, and have implicated two classes of genes, oncogenes and tumour suppressor genes. Most investigations have focused on those astrocytomas that affect the cerebral hemispheres of adults, since these are the most common and malignant brain tumours. The high-grade astrocytomas that affect adults, such as glioblastoma multiforme, often have amplification of the epidermal growth factor receptor (EGFR) oncogene and loss of a variety of chromosomal loci that probably harbour tumour suppressor genes. Of the various tumour suppressor gene loci, the p53 gene on chromosome 17p has been studied most closely and has been shown to be mutated in both low- and high-grade astrocytomas. These genetic alterations may provide a means for subdividing astrocytomas into diagnostic categories. For instance, p53 gene mutations occur more commonly in glioblastomas from young adults and women, while EGFR gene amplification is more common in glioblastomas from older adults and men. For the other primary CNS tumours, genetic studies remain in their infancy. The neurocutaneous syndromes, such as neurofibromatosis types 1 and 2, have provided unique insights into neurological oncogenesis. The NF1 gene on chromosomes 17q and its product, neurofibromin, may be important in the formation of neurofibrosarcomas, while the NF2 gene on chromosome 22q and its product, merlin, are probably involved in the formation of schwannomas and other nervous system tumours. The further characterization of these and other neurological tumour genes will undoubtedly illuminate many other areas in neurooncology.  相似文献   

5.
Blood samples from 125 families with classic type 2 neurofibromatosis with bilateral vestibular schwannomas were analyzed for mutations in the NF2 gene. Causative mutations were identified in 52 families. In five families, the first affected individual in the family (the index case) was a mosaic for a disease-causing mutation. Only one of nine children from the three mosaic cases with children are affected. Four of these nine children inherited the allele associated with the disease-causing mutation yet did not inherit the mutation. NF2 mutations were identified in only 27/79 (34%) of sporadic cases, compared with 25/46 (54%) of familial cases (P<.05). In 48 families in which a mutation has not been identified, the index cases have had 125 children, of whom only 29 are affected with NF2 and of whom only a further 21 cases would be predicted to be affected by use of life curves. The 50/125 (40%) of cases is significantly less than the 50% expected eventually to develop NF2 (P<.05). Somatic mosaicism is likely to be a common cause of classic NF2 and may well account for a low detection rate for mutations in sporadic cases. Degrees of gonosomal mosaicism mean that recurrence risks may well be <50% in the index case when a mutation is not identified in lymphocyte DNA.  相似文献   

6.
7.
Family studies and tumor analyses have combined to indicate that neurofibromatosis 2 (NF2), a disorder characterized by multiple benign tumors of the nervous system, and sporadic non-inherited forms of the same tumor types are both caused by inactivation of a tumor suppressor gene located in 22q12. Recently, the gene encoding merlin, a novel member of a family of cytoskeleton-associated proteins, was identified as the NF2 tumor suppressor. To facilitate the search for merlin mutations, we have defined the exon-intron boundaries for all 17 NF2 exons, including one subject to alternative splicing. We have developed polymerase chain reaction assays to amplify each exon from genomic DNA, and used these assays to perform single-strand conformation polymorphism analysis of DNA from 30 sporadic and eight NF2-derived schwannomas, the hallmark tumor type in this disorder. Of a maximum of 60 alleles scanned, 32 showed mutations affecting expression of the merlin protein. Thirty of these mutations are predicted to lead to a truncated protein due to frameshift, creation of a stop codon, or interference with normal splicing, while two are missense mutations. Thus, inactivation of merlin is a common feature underlying both inherited and sporadic forms of schwannoma.  相似文献   

8.
Neurofibromatosis 2 (NF2) is an uncommon, autosomal dominant disorder in which patients are predisposed to neoplastic and dysplastic lesions of Schwann cells (schwannomas and schwannosis), meningeal cells (meningiomas and meningioangiomatosis) and glial cells (gliomas and glial hamartomas). Clinical and genetic criteria that distinguish NF2 from neurofibromatosis 1 have allowed more accurate assignment of specific pathological features to NF2. The NF2 tumor suppressor gene on chromosome 22q12 encodes a widely expressed protein, named merlin, which may link the cytoskeleton and cell membrane. Germline NF2 mutations in NF2 patients and somatic NF2 mutations in sporadic schwannomas and meningiomas have different mutational spectra, but most NF2 alterations result in a truncated, inactivated merlin protein. In NF2 patients, specific mutations do not necessarily correlate with phenotypic severity, although grossly truncating alterations may result in a more severe phenotype. In schwannomas, NF2 mutations are common and may be necessary for tumorigenesis. In meningiomas, NF2 mutations occur more commonly in fibroblastic than meningothelial subtypes, and may cluster in the first half of the gene. In addition, in meningiomas, a second, non-NF2 meningioma locus is probably also involved. Future efforts in NF2 research will be directed toward elucidating the role of merlin in the normal cell and the sequelae of its inactivation in human tumors.  相似文献   

9.
Deletions involving chromosome 10q23 occur frequently in prostatic carcinomas. Recently, a novel tumour suppressor gene, PTEN, mapping to this interval, has been identified. Mutation or deletion of PTEN has been observed in a proportion of prostate cancer cell lines; however, primary prostate carcinomas have not been studied. We have investigated the involvement of PTEN in primary prostatic adenocarcinomas using a panel of 51 matched normal and prostate tumour DNAs. We first determined the proportion of tumours with allele loss at loci in 10q23 which span the region containing the PTEN gene. Our results show that LOH involving 10q23 is common in primary prostate carcinomas. Twenty-five of 51 (49%) tumours showed loss of heterozygosity (LOH) over the region spanning the PTEN locus. We next directly analysed the PTEN gene for mutations of the coding region using single strand conformation polymorphism (SSCP) and sequence analyses. Of those tumours with LOH, only a single tumour was found to carry a missense mutation in PTEN. No mutations in PTEN were identified in tumours without LOH. Our results suggest either that mutation of PTEN is a late event in prostate tumorigenesis, or that another tumour suppressor gene important in prostate cancer may lie close to PTEN in 10q23.  相似文献   

10.
BACKGROUND: Germline mutations of the RET proto-oncogene identical to those found in the tumour predisposition syndrome multiple endocrine neoplasia type 2A (MEN2A), were detected in 2.5-5% of sporadic and familial cases of Hirschsprung's disease. Some patients with Hirschsprung's disease may therefore be exposed to a highly increased risk of tumours. AIMS: To define clinical use of RET gene testing in Hirschsprung's disease and related patient management from an oncological point of view. METHODS: Sixty patients with Hirschsprung's disease were screened for RET mutations. In three, MEN2A type RET mutations were detected. Case reports for these three patients are presented. RESULTS AND CONCLUSIONS: Only 22 families or sporadic patients with Hirschsprung's disease and MEN2A type RET mutations have been reported. Therefore, it is difficult to predict tumour risk for patients with familial or sporadic Hirschsprung's disease, and their relatives, who carry these mutations. For these mutation carriers, periodic screening for tumours as in MEN2A is advised, but prophylactic thyroidectomy is offered hesitantly. RET gene testing in familial or sporadic Hirschsprung's disease is not recommended at present outside a complete clinical research setting. In combined MEN2A/Hirschsprung's disease families RET gene testing, tumour screening, and prophylactic thyroidectomy are indicated as in MEN2A.  相似文献   

11.
Childhood neuroblastoma, an embryonal neoplasm of sympathetic nervous system progenitors, occurs in a familial form with an autosomal dominant mode of inheritance. Genetic susceptibility to this disorder is thought to arise via a germline mutation affecting a tumor suppressor gene, in accord with the two-hit model established for familial and sporadic retinoblastoma. Surprisingly, the familial neuroblastoma predisposition locus does not map to chromosome band 1p36, a genomic region likely to contain one or more neuroblastoma suppressor genes. We reasoned that inherited point mutations affecting one allele would be unmasked in many cases by somatically acquired deletions of the second allele that included the target gene in the tumor cells from these patients. Thus, to identify chromosomal regions that might contain suppressor genes important in hereditary neuroblastoma, we analyzed six familial tumors by comparative genomic hybridization. Recurrent losses of genetic material were detected on chromosome arms 3p (consensus region, 3p24-pter), 10p (consensus, 10p12-p13), 10q (consensus, 10q25-qter), 16q (consensus, 16q12-q22), and 20q (consensus, 20q13.3-qter), in addition to the regions commonly deleted in sporadic neuroblastomas (1p36 and 11q). These chromosomal sites may harbor novel tumor suppressor genes that could aid in our understanding of the predisposition to and pathogenesis of familial neuroblastoma and potentially sporadic tumors as well.  相似文献   

12.
The genetic events involved in the development of metastases of epithelial ovarian cancer are largely unknown. One gene postulated to play a role in tumour metastasis suppression is NME1 (nm23-H1), and an inverse relationship between NME1 expression and metastatic potential has been observed for some solid tumours. In this study we have investigated the levels of mRNA expression of the 2 isoforms of the NME gene, NME1 and NME2. A maximum of 45 tumours samples from 33 patients were available for Northern blot analysis. We observed variable levels expression of NME1 and NME2 mRNA. The average level of NME1, but not NME2, mRNA expression was statistically higher in metastatic biopsies when compared with primary tumour biopsies. To examine the possible tumour suppressor gene role of NME1 in ovarian tumours, 76 patients were investigated by Southern blot analysis to determine the rate of allelic deletion. Allele loss at 5 other chromosome 17 loci (D17S5, TP53, NF1, D17S74, D17S4) was also evaluated for many of these 76 patients. Allele loss was observed in 22/30 (73%) informative patients at the NME1 locus. We also observed high rates of allele loss at the other loci evaluated. No correlations with clinical stage, histological subtype or patient survival were observed in either mRNA or DNA analyses. We have established that tumour progression in ovarian cancer is accompanied by over-expression of the NME1 gene; however, despite high rates of allele loss at the NME1 locus, the concept that NME1 may be a candidate tumour suppressor gene in ovarian cancer cannot be confirmed by this study.  相似文献   

13.
We conducted a mutation analysis of the most conserved region of the neurofibromatosis type 1 (NF1) gene, the guanine triphosphatase (GTPase) activating protein (GAP)-related domain (NF1 GRD), to which the function of tumour suppressor is attributed. Sixty primary neuroectodermal tumours were analysed. The rationale for the study was based on the likelihood of finding structural alterations resulting in loss of function of this region in tumours of neuroepithelial tissues, where the activity of neurofibromin seems to be crucial in regulating the mechanisms of signal transduction and cell transformation mediated by p21 ras. Following analysis of the whole NF1 GRD sequence, no mutations were identified in the tumours analysed. We conclude that the loss of NF1 gene tumour suppressor function, that might lead or contribute to the development of malignancies in neuroectodermal tissues, is not due to structural abnormalities of the region of the gene which interacts with p21 ras.  相似文献   

14.
Neurofibromatosis 2 (NF2) is an autosomal dominant disease characterized by bilateral vestibular schwannomas and other nonmalignant tumors of the brain, spinal cord, and peripheral nerves. Although the average age of onset of NF2 is 20 years, some individuals may become symptomatic in childhood. We studied 5 unrelated NF2 patients who became symptomatic before age 13. All 5 had multiple tumors in addition to vestibular schwannoma, and none had a positive family history. Sequence analysis of the NF2 gene revealed identical nonsense mutation of exon 6 in 3 patients. Because this mutation destroys a restriction enzyme recognition site, genomic DNA from the 2 other children was directly tested for this change and identical alterations were detected. Although the work of our laboratory and others has not, in general, detected identical mutations in unrelated patients, this mutation seems to occur particularly frequently in the pediatric population and thus may be associated with an especially severe phenotype. Restriction analysis in children with NF2 may be a cost effective way of identifying their mutation. Further work is needed to characterize the effects of this change on the NF2 protein product and its relationship to this severe phenotype.  相似文献   

15.
Schwannomas are peripheral nerve tumors that typically have mutations in the NF2 tumor suppressor gene. We compared cultured schwannoma cells with Schwann cells from normal human peripheral nerves (NHSC). Both cell types expressed specific antigenic markers, interacted with neurons, and proliferated in response to glial growth factor, confirming their identity as Schwann cells. Schwannoma cells frequently had elevated basal proliferation compared to NHSC. Schwannoma cells also showed spread areas 5-7-fold greater than NHSC, aberrant membrane ruffling and numerous, frequently disorganized stress fibers. Dominant negative Rac inhibited schwannoma cell ruffling but had no apparent effect on NHSC. Schwannoma cell stress fibers were inhibited by C3 transferase, tyrphostin A25, or dominant negative RhoA. These data suggest that the Rho and Rac pathways are abnormally activated in schwannoma cells. Levels of ezrin and moesin, proteins related to the NF2 gene product, merlin, were unchanged in schwannoma cells compared to NHSC. Our findings demonstrate for the first time that cell proliferation and actin organization are aberrant in schwannoma cells. Because NF2 is mutant in most or all human schwannomas, we postulate that loss of NF2 contributes to the cell growth and cytoskeletal dysfunction reported here.  相似文献   

16.
17.
The molecular genetics of endocrine tumours is an area of great interest, due to the heterogeneity of endocrine tumour types, the association of hormone over-production in some cases, and the wide variation in tumour behaviour. Genes implicated fall into functional categories such as oncogenes, in which mutations tend to cause activation, and tumour suppressor genes, in which mutations lead to loss of function. Oncogenes include the receptor tyrosine kinases such as RET, signal transduction proteins and other molecules such as cell cycle regulators and nuclear proteins. Tumour suppressor genes include cell cycle regulators such as p53 and other molecules such as the MEN 1 gene. Loss of heterozygosity studies help in the initial localisation of the latter. Endocrine tumours, as with other tumours, develop as a result of a combination of genetic events, and in the paediatric age group they often occur in the setting of familial cancer syndromes. In this review we analyse the main genetic lesions which have been described in endocrine tumours. There has been an explosion of knowledge in the last 5 years including the identification of the causative genes for MEN 2 and most recently for MEN 1. Characterisation of such genes also aids in the study of somatic mutations in sporadic versions of the same tumour types as occur in the familial syndromes. Identification of a genetic predisposition to a certain tumour has management implications that are still to be clarified in most cases, although in the case of MEN 2 the guidelines for prophylactic thyroidectomy are generally well accepted.  相似文献   

18.
Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer   总被引:1,自引:0,他引:1  
Malignant rhabdoid tumours (MRTs) are extremely aggressive cancers of early childhood. They can occur in various locations, mainly the kidney, brain and soft tissues. Cytogenetic and molecular analyses have shown that the deletion of region 11.2 of the long arm of chromosome 22 (22q11.2) is a recurrent genetic characteristic of MRTs, indicating that this locus may encode a tumour suppressor gene. Here we map the most frequently deleted part of chromosome 22q11.2 from a panel of 13 MRT cell lines. We observed six homozygous deletions that delineate the smallest region of overlap between the cell lines. This region is found in the hSNF5/INI1 gene, which encodes a member of the chromatin-remodelling SWI/SNF multiprotein complexes. We analysed the sequence of hSNF5/INI1 and found frameshift or nonsense mutations of this gene in six other cell lines. These truncating mutations of one allele were associated with the loss of the other allele. Identical alterations were observed in corresponding primary tumour DNAs but not in matched constitutional DNAs, indicating that they had been acquired somatically. The observation of bi-allelic alterations of hSNF5/INI1 in MRTs suggests that loss-of-function mutations of hSNF5/INI1 contribute to oncogenesis.  相似文献   

19.
Mutations of the human Patched gene ( PTCH ) have been identified in individuals with the nevoid basal cell carcinoma syndrome (NBCCS) as well as in sporadic basal cell carcinomas and medulloblastomas. We have isolated a homologue of this tumour suppressor gene and localized it to the short arm of chromosome 1 (1p32.1-32.3). Patched 2 ( PTCH2 ) comprises 22 coding exons and spans approximately 15 kb of genomic DNA. The gene encodes a 1203 amino acid putative transmembrane protein which is highly homologous to the PTCH product. We have characterized the genomic structure of PTCH2 and have used single-stranded conformational polymorphism analysis to search for mutations in PTCH2 in NBCCS patients, basal cell carcinomas and in medulloblastomas. To date, we have identified one truncating mutation in a medulloblastoma and a change in a splice donor site in a basal cell carcinoma, suggesting that the gene plays a role in the development of some tumours.  相似文献   

20.
Neurofibromatosis 2 (NF2) is an autosomal dominant disorder that predisposes patients to central nervous system tumors. It is caused by mutations in the NF2 tumor suppressor gene, which is located on chromosome 22q12. We studied 2 multigenerational NF2 families (three members of family 1 and the proband of the family) by gene mutation analysis and clinical assessment. One member of family 1 had a 169 C-->T point mutation at codon 57 of exon 2 and had a severe phenotype. His father had a silent 1113 C-->T point mutation at codon 371 of exon 11 and had a normal phenotype. The proband of family 2 had a deletion at nucleotide 720 G (codon 240) of exon 8. This led to a frameshift and termination at codon 250, and a severe NF2 phenotype. Our results indicate that clinical abnormalities can be present in carriers. Nonsense and frameshift mutations in the NF2 tumor suppressor gene are associated with phenotypes. The clinical abnormalities can develop at a young age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号