首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flow maldistribution in plate heat exchangers causes deterioration of both thermal and hydraulic performance. The situation becomes more complicated for two-phase flows during condensation where uneven distribution of the liquid to the channels reduces heat transfer due to high liquid flooding. The present study evaluates the thermal performance of falling film plate condensers with flow maldistribution from port to channel considering the heat transfer coefficient inside the channels as a function of channel flow rate. A generalized mathematical model has been developed to investigate the effect of maldistribution on the thermal performance as well as the exit quality of vapor. A wide range of parametric study is presented, which shows the effects of the mass flow rate ratio of cold fluid and two-phase fluid, flow configuration, number of channels and correlation for the heat transfer coefficient. The analysis presented here also suggests an improved method for heat transfer data analysis for plate condensers.  相似文献   

2.
针对市场上的平板太阳能集热器结构的优缺点,研制了新型的导热油平板太阳能集热器,并测试其性能.实测结果为,热效率能达到0.45,比普通平板集热器高.表明该导热油平板太阳能集热器性能优越,有很好的应用前景.  相似文献   

3.
The low thermophysical characteristics of air used as a heat transfer fluid in the solar collectors with thermal conversion require a fully developed turbulent flow. This increases the thermal heat transfer between the absorber plate and the fluid, which clearly improves the thermal performances of the solar collector with obstacles arranged into the air channel duct. In the present work, we introduce, in solar collector, the offset rectangular plate fins, which are used in heat exchangers. An experimental investigation carried out showed the generated enhancement of thermal performance. The offset rectangular plate fins, mounted in staggered pattern, are oriented parallel to the fluid flow and are soldered to the underside of absorber plate. They are characterized by high heat transfer area per unit volume. High thermal performances are obtained with low pressure losses and in consequence a low electrical power consumption by the fan in comparison to the flat plate collector. The experimental results are all so compared by using two types of transparent cover; double and triple.  相似文献   

4.
A mathematical model that allows the determination of the thermal performances of the single-pass solar air collector with offset rectangular plate fin absorber plate is developed. The model can predict the temperature profile of all the components of the collector and of the air stream in the channel duct. Into the latter are introduced the offset rectangular plate fins, which increase the thermal heat transfer between the absorber plate and the fluid. The offset rectangular plate fins, mounted in a staggered pattern, are oriented parallel to the fluid flow and are soldered to the underside of the absorber plate. They are characterized by high heat transfer area per unit volume and generate the low pressure losses. The experimental results of the air stream temperature will be compared with the results obtained by the theoretical model suggested.  相似文献   

5.
Common fluids with particles of the order of nanometers in size are termed as ‘nano-fluids’ which have created considerable interest in recent times for their improved heat transfer capabilities. With very small volume fraction of such particles the thermal conductivity and convective heat transfer capability of these suspensions are significantly enhanced without the problems encountered in common slurries such as clogging, erosion, sedimentation and increase in pressure drop. This naturally brings out the question whether such fluids can be used for two phase applications or in other words phase change in such suspensions will be assistant or detrimental to the process of heat transfer. The present paper investigates into this question through experimental study of pool boiling in water-Al2O3 nano-fluids. The results indicate that the nano-particles have pronounced and significant influence on the boiling process deteriorating the boiling characteristics of the fluid. It has been observed that with increasing particle concentration, the degradation in boiling performance takes place which increases the heating surface temperature. This indicates that the role of transient conduction in pool boiling is overshadowed by some other effect. Since the particles under consideration are one to two orders of magnitude smaller than the surface roughness it was concluded that the change of surface characteristics during boiling due to trapped particles on the surface is the cause for the shift of the boiling characteristics in the negative direction. The results serve as a guidance for the design of cooling systems with nano-fluids where an overheating may occur if saturation temperature is attained. It also indicates the possibility of such engineered fluids to be used in material processing or heat treatment applications where a higher pre-assigned surface temperature is required to be maintained without changing the fluid temperature.  相似文献   

6.
A comprehensive heat and mass transfer computational model is used to analyse the intricate two-way coupling arising from the activated chemical reactions involved in the heat treatment of wood. The 2D version of a drying code known as TransPore is used to simulate the coupled heat and mass transfer phenomena. This code accounts for the internal pressure in the porous medium. The pyrolysis model describing the chemical reactions occurring in the main constituents within the cell walls of wood (cellulose, hemicelluloses and lignins) is derived using data taken from the literature. Refined computational strategies were required to address the two-way coupling between the heat and mass transfer and chemical mechanisms, including the thermal activation of the chemical reactions, together with the treatment of heat sources (or sinks) and the production of volatiles. The experimental set-up allows the overall weight loss, and the internal temperature and pressure at specific locations within the board to be determined during processing. The reported simulations highlight that the model is able to capture two particular phenomena observed during the heat treatment of wood: the double pressure peak due to water evaporation and volatiles production; and the temperature overshoot during the heat treatment phase.  相似文献   

7.
Sorption heat pipe (SHP) combines the enhanced heat and mass transfer in conventional heat pipes with sorption phenomena in the sorbent bed. SHP consists of a sorbent system (adsorber/desorber and evaporator) at one end and a condenser + evaporator at the other end. It can be used as a cooler/heater and be cooled and heated as a heat pipe. SHP is suggested for space and ground application, because it is insensitive to some “g” acceleration. This device can be composed of a loop heat pipe (LHP), or capillary pumped loop (CPL) and a solid sorption cooler. The most essential feature is that LHP and SHP have the same evaporator, but are working alternatively out of phase. SHP can be applied as a cryogenic cooler, or as a fluid storage canister. When it is used for cryogenic thermal control of a spacecraft on the orbit (cold plate for infrared observation of the earth, or space), or efficient electronic components cooling device (lased diode), it is considered as a cooler. When it is applied as a cryogenic storage system, it insures the low pressure of cryogenic fluid inside the sorbent material at room temperature.  相似文献   

8.
We present numerical computations of flow and heat transfer in multiple jets impinging normally on a flat heated surface, obtained with a new second-moment turbulence closure combined with an elliptic blending model of non-viscous wall blocking effect. This model provides the mean velocity and turbulent stress fields in very good agreement with PIV measurements. The exploration of several simpler closures for the passive thermal field, conducted in parallel, confirmed that the major prerequisite for the accurate prediction of the temperature field and heat transfer is to compute accurately the velocity and stress fields. If this is achieved, the conventional anisotropic eddy-diffusivity model can suffice even in complex flows. We demonstrate this in multiple-impinging jets where such a model combination provided the distribution of Nusselt number over the solid plate in good agreement with experiments. Extension of the elliptic blending concept to full second-moment treatment of the heat flux and its truncation to a quasi-linear algebraic model is also briefly discussed.  相似文献   

9.
In the present study, the numerical analysis on the heat transfer and flow developments in the channel with one-side corrugated plate under constant heat flux conditions is presented. The corrugated plate with the corrugated tile angles of 40° is simulated with the channel height of 7.5 mm. The flow and heat transfer developments are simulated by the k-ε standard turbulent model. A finite volume method with the structured uniform grid system is employed for solving the model. Effects of relevant parameters on the heat transfer and flow developments are considered. Breaking and destabilizing in the thermal boundary layer are promoted as fluid flowing through the corrugated surface. Therefore, the corrugated surface has a significant effect on the enhancement of heat transfer.  相似文献   

10.
Compared to room temperature adsorption, cryo-adsorptive hydrogen storage capacity has been greatly improved, and has become the central issue of the hydrogen storage research. Accurate simulation and optimization for cryo-adsorptive hydrogen storage has important guidance and application value to the experimental research, and the finite element software Comsol Multiphysics™ and system analysis software Matlab/Simulink™ can be used to simulate the cryo-adsorptive hydrogen storage. However, the computational fluid dynamics (CFD) software Fluent™ can provide more information on the heat and mass transfer and the fluid flow than above softwares. Based on the mass, momentum and energy conservation equations, this paper uses the modified Dubinin–Astakhov (D–A) adsorption isotherm model, linear driving force (LDF) model and dynamic thermal boundary condition which are implemented by means of CFD software Fluent to simulate the hydrogen adsorption processes of charging and dormancy in the case of liquid nitrogen cooling. We study the variations of temperature and pressure during the processes of charging and dormancy. The results show that the experimental data is in good agreement with the simulation results. We also analyze the effect of variable specific heat and anisotropic thermal conductivity on the heat and mass transfer and the fluid flow in cryo-adsorptive hydrogen storage system.  相似文献   

11.
The enhancement heat transfer of the heat transfer devices can be done by changing the fluid transport properties and flow features of working fluids. In the present study, therefore, the enhancement of heat pipe thermal efficiency with nanofluids is presented. The heat pipe is fabricated from the straight copper tube with the outer diameter and length of 15, 600 mm, respectively. The heat pipe with the de-ionic water, alcohol, and nanofluids (alcohol and nanoparticles) are tested. The titanium nanoparticles with diameter of 21 nm are used in the present study which the mixtures of alcohol and nanoparticles are prepared using an ultrasonic homogenizer. Effects of %charge amount of working fluid, heat pipe tilt angle and %nanoparticles volume concentrations on the thermal efficiency of heat pipe are considered. The nanoparticles have a significant effect on the enhancement of thermal efficiency of heat pipe. The thermal efficiency of heat pipe with the nanofluids is compared with that the based fluid.  相似文献   

12.
基于Brinkman-Darcy模型和两方程模型,本文对流体在金属泡沫平板通道内的强制对流换热进行了自编程数值模拟,采用体积平均法对流体在金属泡沫内的流动和换热进行宏观处理。模拟结果表明:流体主流速度随孔密度增大而减小,随孔隙率增大而增大;流体相和固体相之间的局部对流换热系数随孔隙率和孔密度增加而增加,金属泡沫对流换热性能随孔隙率增大而减小,随孔密度增大而增大。金属泡沫强化换热的效果十分明显,可以应用于需要强化换热的紧凑式换热器和散热器。  相似文献   

13.
A process for heat recovery from a thermal plant and transportation over a large distance is presented and discussed. Heat is carried in the vapour phase of a working fluid at the ambient temperature without thermal losses. The performance of the process compares favourably, even for distances of about 100 km, with the local use of a heat pump at the site where the thermal energy is to be consumed. Water can be used as a suitable alternative to freons in such a process of heat transportation.  相似文献   

14.
The effects of both external squeezing and internal pressure pulsations are studied on flow and heat transfer inside non-isothermal and incompressible thin films supported by soft seals. The laminar governing equations are non-dimensionalized and reduced to simpler forms. The upper plate displacement is related to the internal pressure through the elastic behavior of the supporting seals. The following parameters: squeezing number, squeezing frequency, frequency of pulsations, Fixation number (for the seal) and the thermal squeezing parameter are found to be the main controlling parameters. Accordingly, their influences on flow and heat transfer inside disturbed thin films are determined and discussed. It is found that an increase in the Fixation number results in more cooling and a decrease in the average temperature values. Also, it is found that an increase in the squeezing number decreases the turbulence level at the upper plate. Furthermore, fluctuations in the heat transfer and the fluid temperatures can be maximized at relatively lower frequency of internal pressure pulsations.  相似文献   

15.
In this paper a detailed one dimensional nonuniform thermal model of a parabolic trough solar collector/receiver is presented. The entire receiver is divided into two linear halves and two inactive ends for the nonuniform solar radiation, heat transfers and fluid dynamics. Different solar radiation and heat transfer modes can be taken into consideration for these four different regions respectively. This enables the study of different design parameters, material properties, operating conditions, fluid flow and heat transfer performance for the corresponding regions or the whole receiver. Then the nonuniform model and the corresponding uniform thermal model are validated with known performance of an existing parabolic trough solar collector/receiver. For applications, the uniform thermal model can be used to quickly compute the integral heat transfer performance of the whole PTC system while the nonuniform thermal model can be used to analyze the local nonuniform solar radiation and heat transfer performance characteristics and nonuniform heat transfer enhancements or optimizations. Later, it could also be effectively used with an intelligent optimization, such as the genetic algorithm or the particle swarm optimization, to quickly evaluate and optimize the characteristics and performance of PTCs under series of nonuniform conditions in detail.  相似文献   

16.
A theoretical analysis of the steady free convective and mass transfer flow is presented, when a viscous and incompressible fluid flows through a porous medium occupying a semi-infinite region of the space bounded by an infinite vertical porous plate. The fluid is subjected to a normal suction velocity, and the heat flux at the plate is constant. The free-stream velocity is assumed constant.  相似文献   

17.
The present work deals with the natural convection flow and heat transfer from a horizontal plate cooled from above. Experiments are carried out for rectangular plates having aspect ratios between φ=0.036 and 0.43 and Rayleigh numbers in the range 290?Raw?3.3×105. These values of Raw and φ have been selected below those commonly considered in previous research in view of a future application to the design of printed circuit boards. The plates are made of two different metals, copper and steel. The choice of a metal is relevant to the present problem because the plates are heated by means of an electric current. Important variations of the surface temperature are observed along the transverse direction for the steel plates. The surface of the copper plates is almost isothermal because of the high thermal conductivity of the metal.Calculations for a semi-infinite plate are carried out to predict the transverse profiles of the surface temperature and heat flux and to visualize the structure of the flow. Three-dimensional calculations are also used at a qualitative level to observe the changes in the flow structure due to the finite length of the plate. Present results are compared with both previous experimental work and analyses that are based on boundary layer theory. It is shown that analyses for an infinite boundary layer are not completely applicable to the present problem because of its different physics. The most relevant feature of the natural convection flow, which is not predicted by boundary layer analyses, is a thermal plume rising near the center of the plate.Present heat transfer results differ from previous experimental work because of the lower Rayleigh numbers and aspect ratios investigated here. The Nusselt number is found to depend on Rawn, with the exponent n=0.17 being lower than most of the values reported in the literature. This comparatively low value is related to the transverse conduction of heat through the air, which becomes increasingly significant as Raw approaches zero. It is shown that such a low-Raw effect can be accounted for in a physically consistent manner by adding a constant term to the heat transfer correlation. On the other hand, it is found that the Nusselt number does not significantly depend on the aspect ratio in the range of φ investigated contrary to what has been previously reported for wider plates.  相似文献   

18.
In compact steam reformer the probability of component degradation and failure depends strongly on the local temperature gradients coupled by various transport processes and chemical reactions in multi-functional materials. In this paper, the modeling and analysis of coupled mass transport and heat transfer processes are conducted for compact design steam reformer duct, which consists of a porous layer for the reforming reactions of methane, the fuel gas flow duct and solid plate. A fully three-dimensional computational fluid dynamics (CFD) approach is applied to calculate transport processes and effects of thermal conductivities of the involved multi-functional materials on reforming reaction rates and heat transfer/temperature distributions, in terms of surface temperatures/heat fluxes and Nusselt numbers. The steam reformer conditions such as mass balances associated with the chemical reactions and gas permeation to/from the porous layer are implemented in the calculation. The results reveal that a small thermal conductivity of the porous layer and solid plates promote high reforming reaction rates, and the convective heat transfer at the top interface varies more significantly along the main flow reformer duct.  相似文献   

19.
The dynamic behaviour of one-dimensional flow (cocurrent and countercurrent) multistream heat exchangers and their networks is modelled and simulated. The problems can be classified into two types: (1) dynamic responses to arbitrary temperature transients and to sudden flow rate transients from a uniform temperature initial condition or a steady-state condition, which yield a linear mathematical model; (2) dynamic responses to disturbances in thermal flow rates, heat transfer coefficients or flow distributions, which are non-linear problems and should be solved numerically. A linearized model is developed to solve the non-linear problems with small disturbances. The linear model and the linearized model for small disturbances are solved by means of Laplace transform and numerical inverse algorithm. Introducing four matching matrices, the general solution can be applied to various types of one-dimensional flow multistream heat exchangers such as shell-and-tube heat exchangers and plate heat exchangers as well as their networks. The time delays in connecting and bypass pipes are included in the models. The software TAIHE (transient analysis in heat exchangers) is further developed to include the present general solution and is applied to the simulation of fluid temperature responses of multistream heat exchangers. Examples are given to illustrate the procedures in detail.  相似文献   

20.
In this paper a two-dimensional model of an annular cylindrical reactor filled with metal hydride suitable for hydrogen storage is presented. Comparison of the computed bed temperatures with published experimental data shows a reasonably good agreement except for the initial period. Effects of hydrogen pressure and external fluid temperatures on heat transfer and entropy generation are obtained. Results show that the time required for hydrogen charging and discharging is higher when the thermal capacity of the reactor wall is considered. The time required for absorption and desorption can be reduced significantly by varying the hydrogen gas pressure and external fluid temperatures. However, along with reduction in time the entropy generated during hydrogen storage and discharge increases significantly. Results also show that for the given input conditions, heat transfer between the external fluid and hydride bed is the main source of entropy generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号