首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We have carried our constant strain-rate compression tests on polycrystalline Cr2O3 and Cr2O3 doped with 0.09 wt. % Y2O3 to establish whether there exists an effect of Y2O3 on the plasticity of Cr2O3. This study is motivated by previous work on the oxidation of alloys containing reactive-element additions. In that work, it has been observed that the addition of oxygen-active elements, such as Y to alloys that form Cr2O3 or Al2O3 oxide layers upon exposure at high temperature, strongly enhances the adhesion of the oxide layer to the base alloy as compared with alloys without reactive-element additions. We have found that at 1200°C (1) chromia exhibits limited plasticity at high temperatures, and (2) the presence of Y in the oxides does not enhance plasticity compared with addition-free oxides.  相似文献   

2.
Evaporation of Cr2O3 in Atmospheres Containing H2O   总被引:1,自引:0,他引:1  
Yamauchi  A.  Kurokawa  K.  Takahashi  H. 《Oxidation of Metals》2003,59(5-6):517-527
Stainless steels in atmospheres containing H2O form a Cr2O3 scale in the early stage of oxidation. However, the Cr2O3 scale gradually degrades with time. In order to determine the effect of H2O on the deterioration of a Cr2O3 scale, the evaporation behavior of Cr2O3 in N2–O2–H2O atmospheres was investigated. The rate of mass loss in an N2–O2–H2O atmosphere was found to be one order of magnitude higher than the rates in N2–O2 and N2–H2O atmospheres, indicating that deterioration of the Cr2O3 scale is likely to occur in mixed atmospheres of oxygen and water vapor. Volatilization of Cr2O3 is probably based on the following reactions: 1/2Cr2O3(s)+3/4O2(g)+H2O(g)=CrO2(OH)2(g). However, it is also speculated that the reaction, Cr2O3(s)+2/3O2(g)=2CrO3(g), affects the evaporation of Cr2O3 at temperatures higher than 1323 K. The evaporation rate of Cr2O3 is roughly comparable to the growth rate of the Cr2O3 scale. Therefore, a Cr2O3 scale can be degraded by the evaporation of Cr2O3.  相似文献   

3.
Fe2O3-Cr2O3 artificial passive films were formed with a low pressure MOCVD technique using iron (III) acetylacetonate and chromium (III) acetylacetonate. The relationships between the crystal structure, the chemical state of the constituent elements, and the corrosion resistance of the films were examined in acid solutions. The films deposited above 300°C hardly dissolved in 1.0 M HCl and those deposited below 250°C, however, easily dissolved in the same solution. The dissolution rate of the films in solution increased with decreasing substrate temperature. When polarized cathodically in 1.0 M H2SO4, the films deposited below 250°C dissolved due to the reduction of the Fe2O3 component in the films. The reduction of the Fe2O3 component was, however, suppressed on the films deposited above 300°C. Therefore, with increasing crystallinity and the amount of M-O type chemical bonds, the corrosion resistance of the films increases in HCl and H2SO4 solutions.  相似文献   

4.
The non-isothermal oxidation behavior of electrolytic-grade iron and Fe-Cr alloys in dry air has been studied using linear heating rates of 6 K/min, 10 K/ min, and 15 K/min up to a final temperature of 1273–1473 K. Some of the iron and iron-chromium alloy samples were given a surface treatment by dipping them in an aqueous solution containing both Cr and Al ions before their oxidation studies. This pretreatment has resulted in improved oxidation resistance and scale adherence as depicted by no scale rupture even after a second thermal cycle. Mass changes were recorded gravimetrically, and scales have been characterized by SEM, EPMA, and x-ray diffraction analyses.  相似文献   

5.
The lattice and grain-boundary diffusion coefficients of18O atP O 2=0.1 atm and at 900°C were determined in massive Cr2O3 and in Cr2O3 scales which were grown on a Ni–30Cr alloy. The diffusion profiles were established by SIMS and analyzed considering two domains in the case of polycrystalline Cr2O3 (massive or scales), the first one relative to apparent diffusion and the second to grain-boundary diffusion. A ridge model is proposed for Cr2O3 scales to modify thef value, fraction of sites associated with the grain boundary. With such a model,f is equal to 0.0006 and 0.0005 for the scales formed during 15 hr and 165 hr, respectively. The oxygen-lattice diffusion coefficients determined in Cr2O3 scales are in very good agreement with those in massive Cr2O3. With some assumptions, our diffusion data lead to a calculated parabolic oxidation constant equal to the experimental one. Scale growth occurs by countercurrent diffusion of oxygen and chromium, mainly by grain-boundary diffusion.  相似文献   

6.
Ductile cobalt was introduced into Al2O3-TiC (AT) composites by using a chemical deposition method to improve toughness and resistance to thermal shock. The mixture of Co-coated Al2O3 and TiC powders was hot-pressed into an Al2O3-TiC-Co (ATC) composite. The flexure strength and fracture toughness of the ATC composites have been improved considerably, compared with AT and Al2O3. The fracture surface of ATC shows a large proportion of transgranular cracks with some intergranular type, unlike the intergranular fracture modes of AT and Al2O3. The thermal shock properties of the composites were evaluated by water quenching technique and compared with the traditional AT and Al2O3. The composites containing only 3.96 vol.% cobalt exhibited higher critical temperature difference and retained flexure strength. The SEM examination of the fracture surfaces of the ATC composites after single thermal cycle showed that voids increased in number and size, and most isolated voids coalesced with increasing temperature difference, which caused the density and strength to decrease. The ATC composite is less sensitive to repeated thermal shock than the AT composite.  相似文献   

7.
Nano/micro-laminated (ZrO2–Y2O3)/(A12O3–Y2O3) composite coatings were deposited onto an Fe–25Cr–7Ni–N alloy substrate by using alternate electrochemical and sintering processes. The thickness of each layer was in the range of 80–500 nm. Experimental results indicated that the multi-laminated coatings were more effective in providing oxidation resistance than monolithic ZrO2–Y2O3 or A12O3–Y2O3 coatings, with the oxidation resistance of the former increasing with increasing number of laminated layers. The microstructural studies suggest that the laminated coatings possess the advantages of these two types of coatings and avoid the weakness of single ZrO2–Y2O3 or A12O3–Y2O3 coatings. Reactive elements Y and Zr also played a role in this nano-layered setting in improving the oxidation resistance of the coatings.  相似文献   

8.
The goal of this paper was to determine if NiO-forming alloys are a viable alternative to Cr2O3-forming alloys for solid-oxide fuel-cell (SOFC) metallic interconnects. The oxide-scale growth kinetics and electrical properties of a series of Li- and Y2O3-alloyed, NiO-forming Ni-base alloys and La-, Mn-, and Ti-alloyed Fe–18Cr–9W and Fe–25Cr base ferritic Cr2O3-forming alloys were evaluated. The addition of Y2O3 and Li reduced the NiO scale growth rate and increased its electrical conductivity. The area-specific-resistance (ASR) values were comparable to those of the best (lowest ASR) ferritic alloys examined. Oxidation of the ferritic alloys at 800°C in air and air+10% H2O (water vapor) indicated that Mn additions resulted in faster oxidation kinetics/thicker oxide scales, but also lower oxide scale ASRs. Relative in-cell performance in model SOFC stacks operated at 850°C indicated a 60–80% reduction in ASR by Ni+Y2O3, Ni+Y2O3, Li, and Fe–25Cr+La,Mn,Ti interconnects over those made from a baseline, commercial Cr2O3-forming alloy. Collectively, these results indicate that NiO-forming alloys show potential for use as metallic interconnects.  相似文献   

9.
Preoxidized chromium specimens have been high vacuum annealed at 1200° and 1300°C to produce densified Cr 2O3 scales. These specimens have been reoxidized at the same temperatures at 10–6 atm O2. The initial reoxidation is linear with time and is concluded to reflect a volume diffusion controlled transport through the densified scale. The corresponding parabolic rate constant (w2 = kpt)is given by kp=1.4 · 10–2 exp(–235,000/RT)(gram of O) 2/cm4 sec. It is tentatively concluded that outward chromium diffusion predominates in an inner layer of the Cr2O3 scales and inward oxygen diffusion in an outer layer. Under the experimental conditions it has not been possible to maintain growth of the Cr2O3 scales controlled by volume diffusion. The new oxide layer consists of fine crystallites; the oxide grows at grain boundaries within the scales. This causes sideways growth of the scale, breakdown of the originally densified layer, and an increased rate of reaction.  相似文献   

10.
Al含量为0.50%(质量分数)的Cu-Al合金薄板在900℃下内氧化25 h制备Cu-Al_2O_3薄板复合材料,并用富集萃取法提取Cu-Al_2O_3复合材料中的Al_2O_3相。利用TEM分析了Cu-Al_2O_3薄板中的Al_2O_3相的种类、分布、与Cu基体的界面关系,用X射线衍射和TEM研究了萃取粉末的组成。结果表明,Cu-Al薄板内氧化法所得的Cu-Al_2O_3复合材料的析出相主要为γ-Al_2O_3,有少量的α-Al_2O_3和θ-Al_2O_3相存在。析出相Al_2O_3颗粒弥散分布在Cu基体上,且析出相γ-Al_2O_3与Cu基体完全共格;Cu-Al_2O_3薄板复合材料从表层至深约0.5 mm处,Al_2O_3颗粒粒径逐渐减小,从14 nm减小到5 nm,颗粒间距逐渐增大,从10 nm增加到15 nm。  相似文献   

11.
Al2O3-13%TiO2 coatings were deposited on stainless steel substrates from conventional and nanostructured powders using atmospheric plasma spraying (APS). A complete characterization of the feedstock confirmed its nanostructured nature. Coating microstructures and phase compositions were characterized using SEM, TEM, and XRD techniques. The microstructure comprised two clearly differentiated regions. One region, completely fused, consisted mainly of nanometer-sized grains of γ-Al2O3 with dissolved Ti+4. The other region, partly fused, retained the microstructure of the starting powder and was principally made up of submicrometer-sized grains of α-Al2O3, as confirmed by TEM. Coating microhardness as well as tribological behavior were determined. Vickers microhardness values of conventional coatings were in average slightly lower than the values for nanostructured coating. The wear resistance of conventional coatings was shown to be lower than that of nanostructured coatings as a consequence of Ti segregation. A correlation between the final properties, the coating microstructure, and the feedstock characteristics is given.  相似文献   

12.
13.
Haugsrud  R.  Gunnaes  A.E.  Nilsen  O. 《Oxidation of Metals》2003,59(3-4):215-232
The effects of superficial (30–100 nm) La2O3 surface coatings on the oxidation kinetics of Ni from 700 to 1100°C in air and the oxide morphology of the NiO scales have been investigated. The parabolic rate constant is lower than for uncoated Ni by a factor of 5 to 10. The oxide morphology changes with the La2O3 coatings: The oxide scale consists of an outer fine-grain layer with an inner region of coarser, but still equiaxed, grains. SIMS shows that the majority of the La remains at the surface where a highly oxygen-defective spinel, La2Ni4O7, was found by TEM. Two-stage oxidation followed by SIMS profiling reveals that the oxide growth occurs inside the scales.  相似文献   

14.
本文采用醇水共沉淀法制备了三元共晶成分Al2O3/YAG/ZrO2粉体,在600-1350oC温度范围煅烧后研究其物相转变过程。经1300oC煅烧后Al2O3/YAG/ZrO2共晶成分粉体的物相由α-Al2O3、c-ZrO2和YAG构成,且具有α-Al2O3相包裹c-ZrO2相的特殊结构。将煅烧粉体在1550oC下热压烧结,制备具有内晶型结构的共晶成分Al2O3/YAG/ZrO2复相陶瓷,其致密度、室温抗弯强度、断裂韧性和高温(1000oC)抗弯强度分别为98.8%、420 MPa、3.69 MPa.m1/2和464 MPa,并对复相陶瓷组织结构的形成机理进行了探讨。  相似文献   

15.
An agglomerated Cr2O3/wt.%TiO2 powder has been fabricated by the spray drying process under different parameters. The spray-dried powder has well-agglomerated particles of spherical shape. In the conditions of the high slurry feed rate and low binder concentration in the slurry, the powder has large cavities inside some particles and ruggedness over their surface. The optimum plasma spray feed rate has been found by examining the spraying behavior of the powder and melted state of particles. The plasma spray coating has been performed under different process variables such as spraying distance and plasma power. These parameters strongly affect the characteristics of the coated layer: microstructure, hardness, and bond strength.  相似文献   

16.
Diffusion processes in Al 2 O 3 scales formed on NiCrAl + Zr alloys were studied by the proton activation technique employing the 18 O isotope as a tracer. The 18 O profiles identified a zone of oxide penetration beneath the external scale. Both this subscale formation and the outer Al 2 O 3 scale thickness were shown by this technique to increase with Zr content in the alloy. Estimated k p 's from scale thicknesses were in agreement with gravimetric measurements for various Zr levels. Alternate exposures in O and 18 O revealed that oxygen inward transport was the primary growth mechanism. A qualitative analysis of these 18 O profiles indicated that the oxygen transport was primarily via short-circuit paths, such as grain boundaries.  相似文献   

17.
The addition of Fe2O3 to Mg is believed to be able to increase the hydriding rate of Mg, and the addition of Ni is thought to be able to increase the hydriding and dehydriding rates of Mg. A sample Mg-(10wt.%Fe2O3, 5 wt.%Ni) was prepared by mechanical grinding under H2 (reactive mechanical grinding). The as-milled sample absorbed 4.61 wt.% of hydrogen at 593 K under 12 bar H2 for 60 min. Its activation was accomplished after two hydriding-dehydriding cycles. The activated sample absorbed 4.59 wt.% of hydrogen at 593 K under 12 bar H2 for 60 min, and desorbed 3.83 wt.% hydrogen at 593 K under 1.0 bar H2 for 60 min. The activated Mg-(10wt.%Fe2O3, 5 wt.%Ni) had a slightly higher hydriding rate at the beginning of the hydriding reaction but a much higher dehydriding rate compared with the activated Mg-10 wt.%Fe2O3. prepared via spray conversion. After hydriding-dehydriding cycling, Fe2O3 was reduced, Mg2Ni was formed by the reaction of Mg with Ni, and a small fraction of Mg was oxidized.  相似文献   

18.
The effects of K2O and Li2O-doping (0.5, 0.75 and 1.5 mol%) of Fe2O3/Cr2O3 system on its surface and the catalytic properties were investigated. Pure and differently doped solids were calcined in air at 400-600 °C. The formula of the un-doped calcined solid was 0.85Fe2O3:0.15Cr2O3. The techniques employed were TGA, DTA, XRD, N2 adsorption at −196 °C and catalytic oxidation of CO oxidation by O2 at 200-300 °C. The results revealed that DTA curves of pure mixed solids consisted of one endothermic peak and two exothermic peaks. Pure and doped mixed solids calcined at 400 °C are amorphous in nature and turned to α-Fe2O3 upon heating at 500 and 600 °C. K2O and Li2O doping conducted at 500 or 600 °C modified the degree of crystallinity and crystallite size of all phases present which consisted of a mixture of nanocrystalline α- and γ-Fe2O3 together with K2FeO4 and LiFe5O8 phases. However, the heavily Li2O-doped sample consisted only of LiFe5O8 phase. The specific surface area of the system investigated decreased to an extent proportional to the amount of K2O and Li2O added. On the other hand, the catalytic activity was found to increase by increasing the amount of K2O and Li2O added. The maximum increase in the catalytic activity, expressed as the reaction rate constant (k) measured at 200 °C, attained 30.8% and 26.5% for K2O and Li2O doping, respectively. The doping process did not modify the activation energy of the catalyzed reaction but rather increased the concentration of the active sites without changing their energetic nature.  相似文献   

19.
Mechanical properties such as Young’s moduli and fracture toughness of plasma-sprayed Cr3C2-NiCr, WC-Co and Cr2O3 coatings were measured. The tribological properties of the three kinds of coatings were investigated with a block-on-ring self-mated arrangement under water-lubricated sliding. Furthermore, the influences of the mechanical properties on the tribological properties of the coatings were also examined. It was found that the Young’s moduli, bend strengths and fracture toughness of the coatings were lower than the corresponding bulk materials, which may be attributed to the existence of pores and microcracks in the coatings. Among the three kinds of coatings, the magnitude of wear coefficients, in decreasing order, is Cr3C2-NiCr, WC-Co and Cr2O3, and the wear coefficient of Cr2O3 coating was less than 1 × 10−6mm3N−1m−1. The wear mechanisms of the coatings were explained in terms of microcracking and fracturing, and water deteriorated wear performance of the coatings. The higher the fracture toughness and the lower the porosity and length of microcracking of the coating, the more the wear-resistance of the coating.  相似文献   

20.
The oxidation of Cu-Si alloys (containing up to 4.75 wt. % Si) in =0.01 atm from 800 to 1000°C has been investigated using thermogravimetry and other techniques. A 0.04% Si alloy followed a parabolic oxidation law with a rate similar to that of pure Cu. As the Si concentration increased the rate decreased and became irregular owing to SiO2 particles or flakes at the alloy-scale interface. It is considered that sintering of SiO2 particles and rupture of the sinter because of contraction during sintering are responsible for the irregular kinetics. A SiO2 layer forms directly on the 4.75% Si alloy which oxidizes uniformly. The SiO2 was always amorphous. In pure CO2 a similar pattern of amorphous SiO2 particles, flakes, and layers occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号