首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
以常规湿法炼锌工艺锌浸渣为研究对象,对比研究常压酸浸和加压酸浸条件下锌浸渣的酸性浸出减量化效果,以及渣中锌、铜和铟等有价金属的浸出率。结果表明,在常压酸浸条件下,渣量可减少65%以上,渣中锌含量可降至3%左右,锌、铜和铟的浸出率均在91%以上;在加压酸浸条件下,渣量可减少40%以上,渣中锌含量可将至2%以下,锌和铜的浸出率达到95%左右,但铟浸出率仅为70%左右,相对较低。常压酸浸过程锌浸渣中的铁绝大部分浸出,有利于铟的浸出;加压酸浸过程锌浸渣中的铁大量以铅铁矾的形式留在渣中,阻碍了铟的浸出。常压浸出液中铁含量较高,达到25 g/L以上;加压浸出液中铁含量较低,小于2 g/L,有利于后续浸出液中铜、铟的回收。常压浸出渣量少,有利于渣中铅、银的富集,可单独销售;加压浸出由于铁沉淀入渣,致使渣中铅、银富集比低,适合于铅锌联合企业返回铅熔炼炉。  相似文献   

2.
以锌浸出渣为对象,研究了在硫酸—二氧化硫体系还原浸出锌浸渣过程中反应温度、转速、液固比、初始硫酸浓度、SO2分压对锌和铟浸出行为及浸出率的影响。结果表明:采用SO2对锌浸渣进行还原浸出能够大幅提高锌和铟的浸出率,在SO2-H2SO4体系下锌浸渣还原过程中的锌和铟的浸出行为及动力学特性符合二级反应方程,浸出过程受到化学反应控制,表观活化能分别为21.72和39.16kJ/mol,提高温度能够显著提高锌和铟的浸出速率,提高液固比和初始硫酸浓度对锌和铟浸出速率影响较小,在一定范围内提高二氧化硫分压对锌和铟浸出速率影响较为显著。在反应温度105℃、转速500r/min、液固比8、初始硫酸浓度120g/L、SO2分压200kPa的条件下反应150min,锌浸出率达到96%以上、铟浸出率达到95%以上。  相似文献   

3.
进行了从炼铅反射炉烟灰中回收锌、铟的试验研究,采用中性浸出-低酸浸出-浓酸浸出三段逆流工艺,探索了提高锌铟浸出率的最佳工艺操作条件。研究表明,该工艺锌铟的总浸出率分别达94.63%和88.98%,并且铅、锡等金属有效地富集于渣中,综合回收效益明显。  相似文献   

4.
针对火法炼锌过程中产出的硬锌渣,研究了中性浸出锌—浓硫酸熟化水浸铟—碱浸锡,考察了物料粒度、液固体积质量比、体系酸度对锌、铟、锡浸出率的影响。结果表明:在硬锌渣粒度小于200目、液固体积质量比4∶1、反应终点pH为5.0~5.5、反应时间2h、室温、中性浸出条件下,锌浸出率为93%;在反应温度85℃、液固体积质量比8∶1、体系酸度100g/L、反应时间4h条件下进行浓硫酸熟化浸出,铟浸出率达99.7%;在反应温度为室温、氢氧化钠浓度为2mol/L、液固体积质量比3∶1、反应时间2h条件下进行碱浸,锡浸出率达97%。锌、铟、锡得到较好回收。  相似文献   

5.
从高铟锌精矿中综合回收锌和铟   总被引:2,自引:0,他引:2  
某锌精矿中铟含量很高,采用黄钾铁矾法处理该高铟锌精矿,在得到较高锌回收率的同时,大部分的铟进入矾渣,少部分进入高浸渣,从矾渣和高浸渣中可回收得到电铟。锌的浸出率高达98.45%;而95.08%的铟进入铁矾渣可有效回收。生产实践表明采用该工艺,铟的总回收率可达72%,锌的总回收率可达92%。可见,黄钾铁矾法工艺处理高铟锌精矿可以达到综合回收锌和铟的目的。  相似文献   

6.
黄钾铁矾法处理含铟高铁锌精矿   总被引:1,自引:0,他引:1  
黄钾铁矾法处理高铁高铟锌精矿时,锌的总回收率较高;锌冶炼过程中原料中大部分的铟进入矾渣,少部分进入高浸渣,矾渣和高浸渣经高温焙烧、浸出、萃取、电解和铸锭后即可得到电铟。较好的浸出条件为:中浸始酸40 g/L、低浸始酸30 g/L、高浸终酸60 g/L。已有的生产实践表明采用该工艺铟总回收率可达72%左右,锌的总回收率可达92%。  相似文献   

7.
对富铟高铁闪锌矿进行加压酸浸,考察磨矿时间、氧分压、反应时间、温度、初始硫酸质量浓度、液固体积质量比、搅拌速度对锌、铁、铟浸出率的影响。结果表明:适宜条件下,锌、铟浸出率分别为99%和96%;浸出过程中,温度和浸出液中残酸都较传统加压酸浸方法要低,工艺指标更先进。  相似文献   

8.
进行了低酸浸铟铅渣氧压浸铟、锌试验,详细考察了硫酸浓度、液固比、时间、氧压、温度对铟、锌浸出率的影响,对比了氧压酸浸放气和不放气时铟、锌的浸出率,确定了最佳技术条件,并进行了全流程试验,次氧化锌中铟总浸出率迭90.97%,锌总浸出率达92.02%。  相似文献   

9.
湿法炼锌渣中回收锌铟的研究   总被引:4,自引:1,他引:3  
从含铟锌精矿中提取锌、铟常用的两种生产工艺都有工艺流程长,铟回收率低的缺点,为此进行了工艺流程改进的研究:原料经中性浸出后,在中性浸出渣中配入还原剂,经制团、干燥、高温还原挥发,铟、锌富集于挥发物中再进行回收。最佳试验条件:还原剂15%~20%,还原温度l250℃,进料量5kg/h:在此条件下,铟挥发率97%,锌挥发率95%,挥发物酸浸结果表明,锌浸出率98.53%,铟浸出率93.38%,锌铟总回收率得到极大的提高。  相似文献   

10.
研究了将超声波引入到铁矾渣浸出过程中强化铟、锌浸出,对比了直接硫酸浸出和超声波辅助硫酸浸出铟、锌效果,考察了超声波功率、浸出时间、反应温度、硫酸浓度、液固体积质量比和机械搅拌速度对铟、锌浸出率的影响,并对2种方法的浸出渣进行XRD和SEM分析。结果表明:在其他条件相同情况下,酸浸过程中引入超声波可以加快铁矾渣的溶解,提高铟、锌浸出率;反应温度、硫酸浓度、超声波功率对铟、锌浸出率影响较大,浸出时间对铟浸出率影响较小而对锌浸出率影响较大,液固体积质量比和机械搅拌速度对铟、锌浸出率影响不大。该方法为铁矾渣中铟、锌的高效提取提供了一个可供选择的新方法。  相似文献   

11.
提出用氨水—氯化铵一次沉淀分离铁、铝等,以β-DTCPA掩蔽铜、镉、镍、钴、铅,EDTA络合滴定锌,然后用盐酸溶解氢氧化物沉淀,用原子吸收分光光度法测定吸附在氢氧化铁沉淀中的锌含量,从根本上克服了大量胶凝状氢氧化物沉淀对锌的吸附影响.经过大批量出口商检样品的测试考核,结果令人满意.  相似文献   

12.
锌精矿中锌的快速测定   总被引:1,自引:0,他引:1  
杨社红 《云南冶金》2009,38(5):52-54
建立了锌精矿中锌测定的新方法。对共存离子的影响、掩蔽剂的选择、掩蔽剂的用量以及锌标准加镉同收实验、样品加标回收实验进行了探讨。结果表明,在pH5—6的溶液中选择碘化钾为掩蔽剂,碘化钾的用量大于5g镉才能掩蔽完全,锌标准加镉回收实验当镉量小于5mg时锌回收率达99.9%~100.9%,样品加标回收实验锌同收率在98%以上。该方法适用于锌精矿及含镉锌矿中锌的测定,结果与借助极谱仪测定的结果相一致。  相似文献   

13.
14.
锌烟灰制取碱式碳酸锌及活性氧化锌   总被引:8,自引:0,他引:8  
康俊峰 《有色矿冶》2003,19(3):28-31
研究了锌烟灰经酸浸、净液、碳酸盐沉锌、焙烧等步骤制备碱式碳酸锌及活性氧化锌的工艺。流程简单,适应性强,经济效益显著。  相似文献   

15.
从低品位氧化锌矿中回收锌   总被引:2,自引:1,他引:1       下载免费PDF全文
采用"酸浸(或二段浸出)—净化—萃取—电积"工艺从某中低品位氧化锌矿中回收锌。结果表明,锌浸出率可以达到92%以上,电积锌可以达到国标GB/T 470-2008中1#的标准。  相似文献   

16.
文章研究了在pH5.5~6.0之间,用EDTA标准溶液滴定锌合金中的锌镉总量,再用数学公式分别计算出锌量和镉量。试验表明该方法操作简便快速,结果准确,相对标准偏差小于0.8%。  相似文献   

17.
焦萍  赵碧琳 《甘肃冶金》2011,33(6):49-51
针对含锌废渣进行了锌回收的两步酸浸取试验,分析了氧化剂浓度、固液比、浸出温度、浸出反应时间、浸出终点pH、搅拌速度等因素对锌浸出率的影响。试验结果表明:氧化剂为40%过硫酸铵,固液比为1:10,浸出液终点pH=1.5,浸出时间控制在1~1.5 h,浸出温度为常温,搅拌速度为100~200 r/min,锌浸出率达80%以上,RSD为0.87%~1.44%。  相似文献   

18.
唐双华  覃文庆 《湿法冶金》2008,27(2):96-100
研究了用D2EHPA从含锌浸出液中萃取锌.结果表明,以皂化后的体积分数为20%的D2EHPA钠盐作萃取剂,260号溶剂油作稀释剂,在相比(V0/Va)为3∶2,料液初始pH为2.0,搅拌强度200 r/min,萃取时间10 min条件下从锌质量浓度18 g/L的浸出液中萃取锌,静置分层10 min后,锌的单级萃取率达72.81%.用180 g/L硫酸进行反萃取,锌的反萃取率为88.67%,可以实现锌、铁分离.  相似文献   

19.
超细锌粉中金属锌的分析探讨   总被引:1,自引:0,他引:1  
讨论了高铁被锌粉还原。用二氧化碳保护。高锰酸钾测铁。间接分析金属锌。  相似文献   

20.
介绍了用NH3-NH3Cl水溶液浸出锌焙砂,制取高纯锌的新工艺,Zn的平均浸出率约93%,电锌含Zn>99.999%,杂质元素Cu、Cd 、 Co 、Ni 、Fe 、As、Sb均小于0.0001%,Pb<0.0003%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号