首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 530 毫秒
1.
短纤维增强金属基复合材料拉伸应力场的有限元数值分析   总被引:9,自引:0,他引:9  
运用空间轴对称弹塑性有限元方法,研究了短纤维增强金属基复合材料拉伸应力场分布。研究表明,基体和纤维的应力分布及基体塑性行为具有明显的不均匀性,材料参数(纤维长径比,纤维体积分数,纤维根间距和基体应变硬化指数)以不同方式通过影响应力传递基体约束变形和基体应变硬化进而影响应力场分布。  相似文献   

2.
对SiC纤维增强铝基复 不同周次循环变形载荷后强度与塑性的测试表明,循环变形可使其强度、塑性均有所提高。经循环变形载荷作用10周次,抗拉强度提高20%;作用100周次,强度提高30%,塑性也有类似的变化。这一现象与传统疲劳损伤理论不一致,通过对基体材料、SiC纤维体以及复合材料板的各自独立循环变形实验可知。这一现象同循环变形过程中纤维与基体的界面结合强度适度降低有关,这种降低有助于复合材料的强度与塑性的配合。  相似文献   

3.
喷射沉积7075/15SiCp铝基复合材料高温拉伸变形与断裂行为   总被引:1,自引:0,他引:1  
谭群燕  何玉松  张辉 《热加工工艺》2007,36(12):34-36,39
在300~450℃和0.001~0.1s6-1的条件下,对喷射沉积7075/15SiCp铝基复合材料板材的高温拉伸变形与断裂行为进行了研究,用扫描电镜(SEM)观察拉伸断口。结果表明,流变应力随温度的升高而下降,表现出相当的应变软化直至断裂。伸长率随着温度的升高和应变速率的降低而增加,但其应变速率敏感系数最大值仅为0.24,表明不存在超塑性,变形激活能为379kJ/mol,比基体7075铝合金变形激活能高。拉伸断裂行为主要由延性断裂机制控制,其基体金属可见大量局部塑性变形特征,无界面滑移是导致喷射沉积7075/SiCp复合材料过早断裂而不出现超塑性的主要原因。  相似文献   

4.
对SiC纤维增强铝基复合材料经不同周次循环变形载荷后强度与塑性的测试表明.循环变形可使其强度、塑性均有所提高.经循环变形载荷作用10周次、抗拉强度提高20%;作用100周次.强度提高30%.塑性也有类似的变化.这一现象与传统疲劳损伤理论不一致.通过对基体材料、SiC纤维体以及复合材料板的各自独立循环变形实验可知、这一现象同循环变形过程中纤维与基体的界面结合强度适度降低有关,这种降低有助于复合材料的强度与塑性的配合.  相似文献   

5.
利用Gleeble-1500热力模拟试验机,在温度为650~950℃、应变速率为0.01~5 s-1、总应变量0.7的条件下,对W-50%Cu复合材料高温塑性变形过程中的动态再结晶行为及其热加工图进行了研究和分析。试验结果表明:W-50%Cu复合材料高温流动应力-应变曲线主要以动态回复和动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;在真应力-应变曲线基础上,建立的W-50%Cu复合材料高温变形本构模型较好地表征了其高温流变特性;同时,利用W-50%Cu复合材料DMM加工图分析了其变形机制和失稳机制,可确定其热加工工艺优先选择变形温度650~700℃、应变速率1~5 s-1或变形温度850~950℃、应变速率0.01~0.1 s-1。  相似文献   

6.
为优化金属基复合材料的损伤抗力,须研究其纤维/基体界面性能及其影响因素。这些因素大多与加工过程(包括压实温度、压力及冷却速率)和试验温度、试验环境和加载频率有关。可用界面分离强度d、摩擦剪切应力s、能量释放速率或Ⅱ型界面开裂的断裂韧性Gic等参数来描述界面特性。箔-纤维-箔法制备的钛基复合材料在900℃压实冷却过程中,因SiC纤维(5×10-6/℃)的热膨胀系数与钛合金基体(11×10-6/℃)的有差异,因而界面的法线和径向方向必存在残余压应力,其大小取决于压实温度和冷却速率。试验温度升高,接近压实温度时,纤维/基体界面处的残…  相似文献   

7.
在Gleeble-1500D热模拟实验机上对30ZrCp/W复合材料进行高温压缩实验,变形温度和应变速率分别为800℃~1 200℃和10-3 s^-1~1 s^-1,研究其高温压缩变形的流变应力行为.研究表明:随变形温度升高,复合材料的流变应力下降,在10-3s^-1和1200℃下,抗压强度为948.7 MPa.在800℃下发生伪塑性变形,未达到预设变形量,真应力-真应变曲线上表现出的塑性为伪塑性,其是由微裂纹的萌生-钝化引起的.随变形温度升高,复合材料发生动态回复再结晶.随应变速率升高,真应力-真应变曲线形状从“锯齿”型向“平滑”型转变.复合材料对应变速率不敏感,随应变速率升高,复合材料的流变应力略有升高.在800℃和1s^-1下,复合材料的抗压强度为1176.9MPa.用Arrhenius方程描述复合材料在1000℃~1200℃的热变形行为,变形激活能为811.4 kJ/mol.  相似文献   

8.
研究了挤压铸造法制备的Al2O3陶瓷颗粒增强20Cr25Ni20耐热钢基复合材料在500℃下的高温磨损性能,并和基体材料20Cr25Ni20及其他几种常用的辊环材料进行对比。结果表明,在比压为7.95MPa时,Al2O3p/20Cr25Ni20复合材料高温耐磨性是基体材料20Cr25Ni20的3.4倍,比Cr16高铬铸铁提高了46%,YG10硬质合金耐磨性最好,是复合材料的6.5倍。基体材料高温磨损后发生塑性流动,切削严重,复合材料中氧化铝陶瓷颗粒作为高温耐磨相发挥出良好的耐磨作用。  相似文献   

9.
研究了Ti-6Al-4V合金在800℃、850℃和900℃高温条件下进行拉伸试验时空气氧化对超塑性能的影响。通过光学显微镜、扫描电镜和X射线衍射分析了该钛合金氧化层的微观形貌和成分组成,并研究其在高温拉伸下的氧化机理。结果表明,高温氧化导致该合金在高温拉伸过程中表面产生氧化层,而在拉伸应力作用下氧化层断裂并向基体扩展,从而严重降低了Ti-6Al-4V合金的超塑性,但不会影响其抗拉强度及屈服强度。  相似文献   

10.
研究了Si Cf/TC17复合材料的室温、高温(773 K)拉伸性能及其断裂机制.结果表明:Si Cf/TC17复合材料室温、高温应力-应变曲线受纤维线弹性变形和基体屈服程度影响呈现不同的形状;室温断裂机制主要是反应层多次断裂、纤维一次断裂和基体脆性断裂等,高温断裂机制主要是纤维多次断裂、基体韧性断裂和大范围的界面脱黏等;纤维累计损伤理论适合于对Si Cf/TC17复合材料断裂强度的估测,其中室温断裂强度符合临界断裂纤维数大于或等于3时的局部承担载荷模型,高温断裂强度符合均匀承担载荷模型.结合断裂机制和强度估算结果,详细论述了Si Cf/TC17复合材料室温、高温拉伸断裂过程.  相似文献   

11.
The hardness, tensile strength and impact toughness of one quenched and tempered steel with nominal composition of Fe-0.25C-3.0Cr-3.0Mo-0.6Ni-0.1Nb (mass fraction) both at room temperature and at elevated temperatures were investigated in order to develop high-strength steel for long-life gun barrel use. It is found that the steel has lower decrease rate of tensile strength at elevated temperature in comparison with the commonly used G4335V high-strength gun steel, which contains higher Ni and lower Cr and Mo contents. The high elevated-temperature strength of the steel is attributed to the strong secondary hardening effect and high tempering softening resistance caused by the tempering precipitation of fine Mo-rich M2C carbides in the aaaaaaaaaaaaaaaa-Fe matrix. The experimental steel is not susceptible to secondary hardening embrittlement, meanwhile, its room-temperature impact energy is much higher than the normal requirement of impact toughness for high strength gun steels. Therefore, the steel is s  相似文献   

12.
淬火过程中率先引发塑性变形的动力是拉应力,此后拉应力和压应力交替引发塑性变形.拉应力可以诱发压应力的出现.在淬火试样表层可以出现压应力,这不同于传统观点认为淬火表层只能是拉应力的结论.淬火热应力与温度高低关系不大,主要由相对温差(即温度梯度)决定,相对温度高的部分会趋向发展成压应力状态,相对温度低的部分趋向发展成拉应力状态,这是淬火和快速加热产生热应力、塑性变形和残余应力的根本原因.建立了角端、边缘两种淬火热应力模型,提出了淬火角端效应,即在角端拉应力率先引发塑性变形并引起温度梯度、热应力、塑性变形等交替衰减的现象.  相似文献   

13.
《Acta Materialia》2007,55(10):3467-3478
A composite, consisting of 68 vol.% superconducting continuous MgB2 fibers aligned within a ductile Mg matrix, was loaded in uniaxial compression and the volume-averaged lattice strains in the matrix and fiber were measured in situ by synchrotron X-ray diffraction as a function of applied stress. In the elastic range of the composite, both phases exhibit the same strain, indicating that the matrix is transferring load to the fibers according to a simple iso-strain model. In the plastic range of the composite, the matrix is carrying proportionally less load. Plastic load transfer from matrix to fibers is complex due to presence in the fibers of a stiff WB4 core and of cracks produced during the in situ synthesis of the MgB2 fibers from B fibers. Also, load transfer behavior was observed to be different in bulk and near-surface regions, indicating that surface measurements are prone to error.  相似文献   

14.
《Acta Materialia》2002,50(5):1031-1040
Results are presented from neutron diffraction measurement of the strains in each phase, matrix and reinforcement, of a metal matrix composite bar before and after deformation beyond the elastic limit by four-point bending. The strains in each phase have been converted to stress. A stress separation technique was then applied, and the contributing mechanisms separated and identified. In this way the changes in the different contributions owing to plastic deformation have been determined. It is found that, initially, the average phase stresses can be explained in terms of a combination of essentially hydrostatic phase average thermal misfit stresses in the matrix (tension) and particles (compression) combined with a parabolic macrostress from quenching. After plastic bending the change in axial macrostress is as expected for that for a monolithic bar, but unexpectedly the misfit stresses had relaxed to approximately zero in both the tensile and compressive plastically strained regions of the bar.  相似文献   

15.
The hot forming behavior, failure mechanism, and microstructure evolution of in-situ TiB2 particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation conditions of deformation temperatures of 300–450 °C and strain rates of 0.001-1 s?1. The results demonstrate that the failure behavior of the composite exhibits both particle fracture and interface debonding at low temperature and high strain rate, and dimple rupture of the matrix at high temperature and low strain rate. Full dynamic recrystallization, which improves the composite formability, occurs under conditions of high temperature (450 °C) and low strain rate (0.001 s?1); the grain size of the matrix after hot compression was significantly smaller than that of traditional 7075Al and ex-situ particle reinforced 7075Al matrix composite. Based on the flow stress curves, a constitutive model describing the relationship of the flow stress, true strain, strain rate and temperature was proposed. Furthermore, the processing maps based on both the dynamic material modeling (DMM) and modified DMM (MDMM) were established to analyze flow instability domain of the composite and optimize hot forming processing parameters. The optimum processing domain was determined at temperatures of 425-450 °C and strain rates of 0.001-0.01 s?1, in which the fine grain microstructure can be gained and particle crack and interface debonding can be avoided.  相似文献   

16.
In addition to the advantage of the lightweight of magnesium alloys, magnesium composites have moderate strength and elastic modulus. The proposed application of magnesium composites as diesel truck pistons makes it necessary to assess their wear performance. Little research data have been discussed on wear behavior of Mg alloy AE42 matrix and its composites. Thus, this paper reports wear behavior of magnesium alloy AE42(Mg–Al–Mn—RE; rare earth) and its composite AE42-C, which contains 23 vol% of randomly oriented carbon short fibers. Materials characterization, including density measurements, hardness testing, microstructures investigation, and compression testing at temperatures of 25, 150,and 300 °C, were conducted. Wear tests were performed under various loads and sliding distances. Wear mechanisms were also proposed based on the examination of worn surfaces using optical microscopy and scanning electron microscopy equipped with EDX(energy-dispersive X-ray spectrometry) analysis system. The hardness of AE42-23 vol% C composite is twice the hardness of the Mg matrix alloy AE42. Significant improvements to yield stress and compressive strength at temperatures of 25, 150, and 300 °C of the composite versus the AE42 alloy are achieved. Wear resistance of the composite is improved considerably versus that of the Mg alloy AE42 at the various sliding distances. Smearing of graphite on the worn surface produces a lubricating film that delays change from mild to severe wear of the composite, especially at high loads. EDX analysis of the worn surface shows oxidation of the matrix alloy at higher wear loads, and this mechanism decreases in the presence of carbon fibers under the same loads. Abrasive wear, oxidation, and plastic deformation are the dominant wear mechanisms for the alloy matrix AE42, whereas mainly abrasive wear is the wear mechanism of AE42-23 vol% C composite under the proposed testing conditions.  相似文献   

17.
A numerical analysis of the reinforcing particle shape and interface strength effects on the deformation and fracture behavior of an Al/Al2O3 composite is performed. Three-dimensional calculations are carried out for five elastic–brittle particles embedded into the elastic–plastic matrix, the reinforcing particle shape being varied from spherical to strongly irregular. It is shown that microstructural heterogeneity of the composite gives rise to a complex stress–strain state in the vicinity of particle boundaries and hence to near-interface areas undergoing tensile deformation both in tension and compression. Within the strain range under study, compressive strength is not achieved, either in compression or in tension, i.e., all cracks grow only under tensile stress. Particle fracture is found to occur by two mechanisms: interface debonding and particle cracking. Individual and combined effects of the particle shape, interface strength, and loading conditions on the fracture mechanisms are analyzed.  相似文献   

18.
Al-20Cu-4.5Si-3Ni-0.25RE合金的高温流变本构方程   总被引:1,自引:1,他引:0  
在Gleeble-1500热模拟机上进行高温等温圆柱体压缩试验,研究Al-20Cu-4.5Si-3Ni-0.25RE合金在高温塑性变形过程中流变应力的变化规律。结果表明:应变速率和变形温度的变化强烈地影响Al-20Cu-4.5Si-3Ni-0.25RE合金的流变应力,流变应力随变形温度升高而降低,随应变速率提高而增大。可用Zener-Hollomon参数的双曲正弦形式来描述Al-20Cu-4.5Si-3Ni-0.25RE合金热压缩变形时的流变应力行为。  相似文献   

19.
The amorphous/crystalline composite comprising amorphous particles of Cu54Ni6Zr22Ti18 embedded in the crystalline nickel matrix was produced and its temperature dependence of the plastic deformation behavior was studied in the supercooled liquid region (SLR) of the amorphous alloy. The flow stress of the amorphous alloy was quite sensitive to the testing temperature in the SLR. The deformation of the composites was dominated by the flow stress of the amorphous alloy. The deformation behavior of the composite was analyzed by finite element method (FEM) calculations.  相似文献   

20.
A multi-inclusion cell model is used to investigate the effect of deformation temperature and whisker rotation on the hot compressive behavior of metal matrix composites with misaligned whiskers. Numerical results show that deformation temperature influences the work-hardening behavior of the matrix and the rotation behavior of the whiskers. With increasing temperature, the work hardening rate of the matrix decreases, but the whisker rotation angle increases. Both whisker rotation and the increase of deformation temperature can induce reductions in the load supported by whisker and the load transferred from matrix to whisker. Additionally, it is found that during large strain deformation at higher temperatures, the enhancing of deformation temperature can reduce the effect of whisker rotation. Meanwhile, the stress-strain behavior of the composite is rather sensitive to deformation temperature. At a relatively lower temperature (150℃), the composite exhibits work hardening due to the matrix work hardening, but at relatively higher temperatures (300℃ and above), the composite shows strain softening due to whisker rotation. It is also found that during hot compression at higher temperatures, the softening rate of the composite decreases with increasing temperature. The predicted stress-strain behavior of the composite is approximately in agreement with the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号