首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single-crystal X-ray and electron-diffraction studies show the existence in one polymorph of 4CaO.Al2O3. 13H2O of a hexagonal structural element with α= 5.74 a.u., c = 7.92 a. u. and atomic contents Ca2(OH)7- 3H2O. These structural elements are stacked in a complex way and there are probably two or more poly-types as in SiC or ZnS. Hydrocalumite is closely related to 4CaO.A12O3.13H2O, from which it is derived by substitution of CO32-for 20H-+ 3H2O once in every eight structural elements; similar substitutions explain the existence of compounds of the types 3CaO Al2O3.Ca Y 2- xH2O and 3CaO Al2O3 Ca Y xH2O. On dehydration, 4CaO.Al2O3.13H2O first loses molecular water and undergoes stacking changes and shrinkage along c. At 150° to 250°C., Ca(OH)2 and 4CaO.3Al2O3.3H2O are formed and, by 1000°C., CaO and 12CaO.7Al2O8. The dehydration of hydrocalumite follows a similar course, but no 4CaO.3Al2O3.3H2O is formed.  相似文献   

2.
Phase relations in the system Na2O· Al2O3-CaO· Al2O3-Al2O3 at 1200°C in air were determined using the quenching method and high-temperature X-ray diffraction. The compound 2Na2O · 3CaO · 5Al2O3, known from the literature, was reformulated as Na2O · CaO · 2Al2O3. A new compound with the probable composition Na2O · 3CaO · 8Al2O3 was found. Cell parameters of both compounds were determined. The compound Na2O · CaO-2Al2O3 is tetragonal with a = 1.04348(24) and c = 0.72539(31) nm; it forms solid solutions with Na2O · Al2O3 up to 38 mol% Na2O at 1200°C. The compound Na2O · 3CaO · 8Al2O3 is hexagonal with) a = 0.98436(4) and c = 0.69415(4) nm. The compound CaO · 6Al2O3 is not initially formed from oxide components at 1200°C but behaves as an equilibrium phase when it is formed separately at higher temperatures. The very slow transformation kinetics between β and β "-Al2O3 make it very difficult to determine equilibrium phase relations in the high-Al2O3 part of the diagram. Conclusions as to lifetime processes in high-pressure sodium discharge lamps can be drawn from the phase diagram.  相似文献   

3.
Paste samples of tricalcium aluminate alone, with CaCl2, with gypsum, and with gypsum and CaCl2 were hydrated for up to 6 months and the hydration products characterized by SEM, XRD, and DTA. Tricalcium aluminate hydrated initially to a hexagonal hydroaluminate phase which then changed to the cubic form; the transformation rate depended on the size and shape of the sample and on temperature. The addition of CaCl2 to tricalcium aluminate resulted in the formation of 3CaO · Al2O3· CaCl2·10H2O and 4CaO · Al2O3· 13H2O, or a solid solution of the two. The chloride retarded the formation of the cubic phase 3CaO · Al2O3· 6H2O; the addition of gypsum resulted in the formation of monosulfoaluminate with a minor amount of ettringite. When chloride was added to tricalcium aluminate and gypsum, more ettringite was formed, although 3CaO · Al2O3· CaSO4· 12H2O and 3CaO · Al2O3· CaCl2· 10H2O were the main hydration products.  相似文献   

4.
Mixtures of 0.8 moles of CaO per mole of SiO2 plus Al2O3 were prepared from lime, kaolin, and tripoli (microcrystalline quartz); the amounts of SiO2 to Al2O3 were varied to give from 0.2 to 20.7% Al2O3 by weight of dry solids. After hydrothermal treatment (170° to 175°C.), the products were examined by differential thermal analysis and by X-ray diffraction. A homogeneous solid identified as the mineral tobermorite (4CaO.5SiO2.5H2O) and containing up to 4 or 5% Al2O3 was obtained. Increasing the amount of Al2O3 in the raw mixture above about 5% resulted in the formation of the hydrogarnet 3CaO.Al2O3.SiO2.4H2O as a second phase. Allowing for the Al2O3 combined in this solid, it was indicated that slightly more Al2O3 was substituted in the tobermorite as the amount was increased in the raw mixture. It is suggested that the Al3+ ions probably assume tetrahedral coordination when substituting for the Si4+ ions.  相似文献   

5.
Calcium hexa-aluminate (CaO·6Al2O3) has been prepared from calcium nitrate and aluminum sulfate solutions in the temperature range of 1000°–1400°C. A 0.3 mol/L solution of aluminum sulfate was prepared, and calcium nitrate was dissolved in it in a ratio that produced 6 mol of Al2(SO4)3·16H2O for each mole of Ca(NO3)2·4H2O. It was dried over a hot magnetic stirrer at ∼70°C and fired at 1000°–1400°C for 30–360 min. The phases formed were determined by XRD. It was observed that CaO·Al2O3 and CaO·2Al2O3 were also formed as reaction intermediates in the reaction mix of CaO·6Al2O3. The kinetics of the formation of CaO·6Al2O3 have been studied using the phase-boundary-controlled equation 1 − (1 − x )1/3= K log t and the Arrhenius plot. The activation energy for the low-temperature synthesis of CaO·6Al2O3 was 40 kJ/mol.  相似文献   

6.
A study of the system Al2O3–Ga2O3–H2O has resulted in the determination of equilibrium diagrams for the systems Al2O3–Ga2O3 and Al2O3.-H2O–Ga2O3.H2O. Extensive solid solution characterizes the α -Al2O3 and β -Ga2O3 structures at high temperatures, but it is shown that below 810°C. a compound, GaAlO3, and a new series of (Al, Ga)2O3 structures are stable. Among the hydrates, a complete series of diaspore solid solutions extends from Al2O3.H2O to Ga2O3.H2O. Boehmite solid solutions extend to approximately the composition 70Al2O3.H2O, 30Ga2O3.H2O.  相似文献   

7.
We investigated the characteristics of calcium phosphate cements (CPC) prepared by an exothermic acid–base reaction between NH4H2PO4-based fertilizer (Poly-N) and calcium aluminate compounds (CAC), such as 3CaO · Al2O3 (C3A), CaO · Al2O3 (CA), and CaO · 2Al2O3 (CA2), in a series of integrated studies of reaction kinetics, interfacial reactions, in-situ phase transformations, and microstructure development. Two groups were compared: untreated and hydrothermally treated CPC specimens. The extent of reactivity of CAC with Poly-N at 25°C was in the following order: CA > C3A ≫ CA2. The formation of a NH4CaPO4· x H2O salt during this reaction was responsible for the development of strength in the CPC specimens. The in-situ phase transformation of amorphous NH4CaPO4· x H2O into crystalline Ca5(PO4)3(OH) and the conversion of hydrous Al2O3 gel →γ-AIOOH occur in cement bodies during exposure in an autoclave to temperatures up to 300°C. This phase transformation significantly improved mechanical strength.  相似文献   

8.
Phase equilibria have been determined in the system CaO-Al2O3-H2O in the temperature range 100° to 1000°C. under water pressures of up to 3000 atmospheres. Only three hydrated phases are formed stably in the system: Ca(OH)2, 3CaO·Al2O3·6H2O, and 4CaO·3Al2O3-3H2O. Pressure-temperature curves delineating the equilibrium decomposition of each of these phases have been determined, and some ther-mochemical data have been deduced therefrom. It has been established that both the compounds CaO·Al2O3 and 3CaO·Al2O3 have a minimum temperature of stability which is above 1000°C. The relevance of the new data to some aspects of cement chemistry is discussed.  相似文献   

9.
Polycrystalline Al2O3 was chemically vapor-deposited onto sintered Al2O3 substrates by reaction of AlCl3 with (1) H2O, (2) CO:H2, and (3) O2 at 1000° and 1500°C and 0.5 and 5.0 torr. Although the thermodynamics of all these reactions predict the formation of solid Al2O3, the deposition rate of the first reaction was considerably greater than that of the second. The third reaction was so slow that no measurable deposit was formed in 6 h at 1500°C. Formation of dense deposits of α-Al2O3 was favored by increasing temperature and decreasing pressure. Microstructural examination of the dense deposits showed long columnar grains, the largest of which extended through the deposit from the substrate to the surface.  相似文献   

10.
Strätlingite (2CaO·Al2O3·SiO2·8H2O) is a complex calcium aluminosilicate hydrate commonly associated with the hydration of slag-containing cements or other cements enriched in alumina. Strätlingite can coexist with the hydrogarnet solid solution [hydrogarnet (3CaO·Al2O3·6H2O)-katoite (3CaO·Al2O3·SiO2·4H2O)] and calcium silicate hydrate (C-S-H). Since Strätlingite is present in many blended cements, the knowledge of strätlingite's characteristic silicate anion structure and how aluminum is accommodated by the structure is important. Phase pure Strätlingite samples have been synthesized from oxides in the presence of excess water and from metakaolinite, calcium aluminate cement, CaO, NaOH, and water. The samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) and then further examined using 29Si, with and without cross-polarization (CP), and 27Al solid-state magic angle nuclear magnetic resonance spectroscopy (MASNMR). For the most part, NMR data for these strätlingites corroborate structural information available in the literature. The aluminum atoms are both tetrahedrally and octahedrally coordinated, and the silicon atoms exist predominantly as Q2, Q2(1Al), and Q2(2Al) species. The presence of alkali affects the structure of strätlingite in subtle ways, significantly reducing the AlIV/A1VI ratio.  相似文献   

11.
Preparation and Characterization of Aluminum Borate   总被引:2,自引:0,他引:2  
Aluminum borate, 9Al2O3·2B2O3 or Al18B4O33, was synthesized by the reaction of stoichiometric amounts of α-Al2O3 and B2O3. The Al18B4O33 material was formed into a dense ceramic by pressureless sintering with CaO, MgO, or CaAl2B2O7 additives. The material was characterized by low bulk density, moderate coefficient of thermal expansion (3 × 10−6/°C to 5 × 10−6/°C), moderate strength (210 to 324 MPa), and low dielectric constant.  相似文献   

12.
An exothermic transition is observed near 400°CC on thermal dehydration of highly crystalline AI2(SO4)3.16H2O, Al2(S04)3 14H2O, and Al2(S04)3 9H2O when the early stages of heating are carried out in vacuum. Amorphous or partially crystalline hydrates do not show the exotherm. No systematic relation is apparent between the decomposition behavior and the pore volume distribution of the various anhydrous A12(SO4)3 products.  相似文献   

13.
The synthesis of colloidal boehmite (AlOOH) is studied by heating basic aluminum chloride solutions under constant stirring. The temperature and Al2O3: Cl molar ratio influence the product morphology. Synthesis at 140°C generates highly fibrous polycrystalline particles that are on average 360 nm long, 30 nm broad, and 8 nm thick. They contain 0.11 mol of excess H2O per 1 mol of AlOOH. Synthesis at temperatures between 140° and 190°C produces broader fibrils and less excess H2O. Preparation at 220°C eventually produces fully crystalline platelike boehmite particles about 260 nm long, 95 nm broad, and 14 nm thick, without excess H2O. Fibril synthesis requires an Al2O3:Cl molar ratio exceeding 1.0 to yield noncoagulated particles. The fibrils are fairly monodisperse with 20% standard deviation in their length for an Al2O3: Cl molar ratio about 1.0.  相似文献   

14.
Solid-state reactions between Li2O and Al2 O3 were studied in the region between Li2O.Al2 O 3 and Al2 O 3. The compound Li2 O Al2 O 3 melts at 1610°± 15°C. and undergoes a rapid reversible inversion between 1200° and 1300°C. Vaporization of Li2 O from compositions in the system proceeds at an appreciable rate at 1400°C, as shown by fluorescence. Lithium spinel, Li2 O -5Al2O3, was the only other compound observed. The effect of Li2 O on the sintering of alumina was investigated.  相似文献   

15.
A tentative phase diagram for the system Al203-Nd2O3 is presented. Three compounds were obtained: a β -A12O3-type compound, the perovskite NdAlO3, and Nd4Al2O9. The perovskite melts congruently (mp 2090°C), and the two other compounds exhibit incongruent melting behavior: β -Nd/Al2O3, mp 1900°C; Nd4Al2O9, mp 1905°C. Two eutectics exist with the following compositions and melting points: 80 mol% Al2O3, 1750°C; 23 mol% Al2O3,1800°C. Nd4Al2O9 decomposes in the solid state at 1780°C.  相似文献   

16.
Synthesis of Titanate Derivatives Using Ion-Exchange Reaction   总被引:3,自引:0,他引:3  
Two types of titanate derivatives, layered hydrous titanium dioxide (H2Ti4O9· n H2O) and potassium octatitanate (K2Ti8O17) with a tunnellike structure, were synthesized using an ion-exchange reaction. Fibrous potassium tetratitanate (K2Ti4O9· n H2O) was prepared by calcination of a mixture of K2CO3 and TiO2 with a molar ratio of 2.8 at 1050°C for 3 h, followed by boiling-water treatment of the calcined products for 10 h. The material then was transformed to layered H2Ti4O9· n H2O through an exchange of K+ ions with H+ ions using HCl. K2Ti8O17 was formed by a thermal treatment of KHTi4O9· n H2O. Pure KHTi4O9· n H2O phase was effectively produced by a treatment of K2Ti4O9 with 0.005 M HCl solution for 30 min. Thermal treatment at 250°–500°C for 3 h resulted in formation of only K2Ti8O17.  相似文献   

17.
Nine compositions containing 40 to 68% B2O3 were used to study the high-lithia portion of the system Li2O-B2O3 by quenching and differential thermal analysis methods. The compounds 3Li2O 2B2O3 and 3Li2O B2O3 melted incongruently at 700°± 6°C, and 715°± 15°C., respectively. The compound 2Li2O B2O3 is assumed to dissociate slightly below 650°± 15° C., although the data could also be interpreted as in-congruent melting. Below 600°± 6°C. it does dissociate to the 3:2 and 3:1 compounds. In this narrow temperature interval the 2:1 compound had an inversion at 618°± 6°C. Both forms of the 2:1 compound could be quenched to room temperature. X-ray diffraction data for the compounds are tabulated, and the complete phase diagram for the system Li2O-B2O3 is presented.  相似文献   

18.
The effect of Al(NO3)3·9H2O, AlCl3·6H2O, Al(CH3COO)3, and NH4F on the specific surface of Al2O3 obtained from aluminum-ammonium alum by calcining was studied. It was found that the use of these additives makes it possible to obtain Al2O3 with specific surface varying from 1 to 135 m2/g after thermal treatment in the interval from 1273 to 1423 K. The changes in the morphology and structure of powederd Al2O3 obtained from alum containing these additives were studied by electron microscope observations.  相似文献   

19.
Preparation and Properties of Alumina/Nickel-Cobalt Alloy Nanocomposites   总被引:4,自引:0,他引:4  
High-density nickel-cobalt alloy-dispersed Al2O3 (Al2O3/Ni-Co alloy) composites were obtained via the hydrogen reduction and hot pressing of Al2O3, Ni(NO3)26H2O, and Co(NO3)26H2O powder mixtures. Microstructural investigations revealed that nanometer-sized alloy particles were dispersed homogeneously at the matrix grain boundaries, forming the intergranular-type nanocomposite. High strength (>1 GPa) was registered for the Al2O3/10 wt% Ni-Co alloy composite. An inverse magnetostrictive response to applied stress was observed, because of the Ni-Co alloy dispersions, which indicates promise for incorporating new functions such as stress and fracture sensing into the structural ceramics without any loss of mechanical properties.  相似文献   

20.
Vanadium tetroxide and vanadium pentoxide were prepared and some of their physical properties were measured. A brief survey was then made of some of their binary oxide compounds. Various mixtures of V2O4 or V2O6 and BeO, MgO, CaO, SrO, BaO, Al2O3, SiO2, TiO2, CeO2, ZrO2, Nb2O6, and U3O8 were heated. When compounds were formed, some of their properties were determined. Refractoriness, thermal expansion, and optical properties were considered of special interest. Vanadium pentoxide was found to have a linear thermal expansion of only 0.63 × 10−6 per °C. from 30° to 450°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号