首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of calcium-modified alumina-supported cobalt catalysts were prepared with a two-step impregnation method, and the effect of calcium on the catalytic performances of the catalysts for the partial oxidation of methane to syngas (CO and H2) was investigated at 750 °C. Also, the catalysts were characterized by XRD, TEM, TPR and (in situ) Raman. At 6 wt.% of cobalt loading, the unmodified alumina-supported cobalt catalyst showed a very low activity and a rapid deactivation, while the calcium-modified catalyst presented a good performance for this process with the CH4 conversion of 88%, CO selectivity of 94% and undetectable carbon deposition during a long-time running. Characterization results showed that the calcium modification can effectively increase the dispersion and reducibility of Co3O4, decrease the Co metal particle size, and suppress the reoxidation of cobalt as well as the phase transformation to form CoAl2O4 spinel phases under the reaction conditions. These could be related to the excellent catalytic performances of Co/Ca/Al2O3 catalysts.  相似文献   

2.
Partial oxidation of methane to synthesis gas was carried out using supported iridium–nickel bimetallic catalysts, in order to reduce loading levels of iridium and nickel, and to avoid carbon deposition on nickel-based catalysts by adding iridium. The performance of supported iridium–nickel bimetallic catalysts in synthesis gas formation depended strongly upon the support materials. La2O3 gave the best performance among the support materials tested. Ir(0.25 wt%)–Ni(0.5 wt%)/La2O3 afforded 36% conversion of methane (CH4/O2=5) to give CO and H2 with the selectivities of above 90% at 800°C, and those at 600°C were 25.3% conversion of methane and CO and H2 selectivities of about 80%, respectively. Reduced monometallic Ir(0.25 wt%)/La2O3 and Ni(0.5 wt%)/La2O3 catalysts did not produce synthesis gas at 600°C. A higher conversion of methane was obtained by synergistic effects. The product concentrations of CO, H2, and CO2, and CH4 conversion were maintained in high values, even increasing the space velocity of feed gas over Ir–Ni/La2O3 catalyst, indicating that rapid reaction takes place. As a by-product, a small amount of carbon deposition was observed, but carbon formation decreased with increasing the space velocity. On the other hand, with reduced monometallic Ni(10 wt%)/La2O3 catalyst, yield of synthesis gas and carbon decreased with increasing the space velocity.  相似文献   

3.
The partial oxidation of methane to synthesis gas over catalysts consisting of Rh supported on hexaaluminates (BaAl12O19, CaAl12O19 and SrAl12O19) was investigated at atmospheric pressure and high reactant dilution in order to compare their performances within the kinetic-controlling regime. Comparison with the results obtained over a commercial Rh/-Al2O3 system indicates that hexaaluminate catalysts are active and selective in this reaction. Despite of the higher surface area of the support, hexaaluminate-supported catalysts were found less stable, active and selective than an -Al2O3-supported catalyst.  相似文献   

4.
Catalytic partial oxidation of methane has been reviewed with an emphasis on the reaction mechanisms over transition metal catalysts. The thermodynamics and aspects related to heat and mass transport is also evaluated, and an extensive table on research contributions to methane partial oxidation over transition metal catalysts in the literature is provided.Presented are both theoretical and experimental evidence pointing to inherent differences in the reaction mechanism over transition metals. These differences are related to methane dissociation, binding site preferences, the stability of OH surface species, surface residence times of active species and contributions from lattice oxygen atoms and support species.Methane dissociation requires a reduced metal surface, but at elevated temperatures oxides of active species may be reduced by direct interaction with methane or from the reaction with H, H2, C or CO.The comparison of elementary reaction steps on Pt and Rh illustrates that a key factor to produce hydrogen as a primary product is a high activation energy barrier to the formation of OH. Another essential property for the formation of H2 and CO as primary products is a low surface coverage of intermediates, such that the probability of O–H, OH–H and CO–O interactions are reduced.The local concentrations of reactants and products change rapidly through the catalyst bed. This influences the reaction mechanisms, but the product composition is typically close to equilibrated at the bed exit temperature.  相似文献   

5.
A mechanistic study on the partial oxidation of methane to synthesis gas (H2 and CO) was conducted with supported nickel catalysts. To investigate the reaction mechanism, pulse experiments, O2-TPD, and a comparison of the moles of reactants and products were carried out. From the O2-TPD experiment, it was observed that the active catalyst in the synthesis gas production desorbed oxygen at a lower temperature. In the pulse experiment, the temperature of the top of the catalyst bed increased with the pulses, whereas the temperature of the bottom decreased. This suggests that there are two kinds of reactions, that is, the total oxidation of methane (exothermic) at the top and reforming reactions (endothermic) at the bottom. From the comparison of the moles of reactants and products, it was found that the moles of CO2, CH4 and H2O decreased as the moles of H2 and CO increased. The results support the mechanism that synthesis gas is produced through a two-step reaction mechanism: the total oxidation of methane to CO2 and H2O takes place first, followed by the reforming reaction of the produced CO2 and H2O with residual CH4 to form synthesis gas. This paper is dedicated to Professor Hyun-Ku Rhee on the occasion of his retirement from Seoul National University.  相似文献   

6.
Performances of BaTi1 − xNixO3 perovskites, prepared using sol–gel method, as catalysts for partial oxidation of methane to syngas have been studied. The catalysts were characterized by XRD, BET and TEM. The experimental studies showed the calcination temperature and Ni content exhibited a significant influence on catalytic activity. Among catalysts tested, the catalyst BaTi0.8Ni0.2O3 exhibited the best activity and excellent stability.  相似文献   

7.
8.
The partial oxidation of methane (POM) to syngas, i.e. H2 and CO, over supported Rh catalysts was investigated at atmospheric pressure. The influence of support material, Rh loading and the presence of water vapor on the methane conversion efficiency and the product gas composition was studied. The catalysts containing ceria in the support material showed the highest activity and formation of H2 and CO. By increasing the Rh loading, a decrease of the ignition temperature was obtained. The addition of water vapor to the reactant gas mixture was found to increase the ignition temperature and the formation of hydrogen, which is favorable for combustion applications where the catalytic POM stage is followed by H2-stabilized homogeneous combustion.  相似文献   

9.
The reaction between methane and cerium oxide to produce syngas has been studied at 700°C in a pulse apparatus. The cerium oxide was supported on γ-Al2O3 and promoted by re-impregnation with Pt or Rh. The promoters drastically enhanced the conversion of methane. TPR with hydrogen shows that Pt and Rh also lowered the temperature necessary to reduce the cerium oxide. Studies of the reaction between methane and promoted cerium oxide showed that the selectivity to syngas depends on the degree of reduction of the cerium oxide. The promoters also led to some carbon formation. Regeneration of the reduced oxide was studied both with oxygen and carbon dioxide.  相似文献   

10.
The formation of acetic acid and/or ethylene by oxidation of ethane is strongly dependent on X additives or Y promotor added to MoVO-based catalysts. MoV0.4X0.12YOz (X = Nb; Y = Pd;  = 10−4) catalysts were prepared by the slurry method and their structural properties were studied by in situ (redox conditions) XRD, Raman and XPS techniques. The reactivity during reduction and reoxidation was analysed by thermal analysis (TGA/DSC). The oxidation of ethane was carried out in a conventional fixed bed microreactor with on line analysis by gas chromatography. Results show that Nb exerts mainly a structural effect as it is responsible for the stabilisation of molybdenum (VI) by formation of solid solutions with V, and that Pd modifies the rate of reduction of the solid catalysts. The increase of selectivity to acetic acid observed by Pd promotion is likely due to the transformation of ethylene to acetic acid occurring on neighboring Pd–V active sites.  相似文献   

11.
The behaviour of Ni supported catalysts, obtained using Ni(NO3)2 and Ni-acetylacetonate as precursor compounds, is analyzed. It is observed that initial activities and selectivities are similar for both systems, but the stability differs significantly. The systems show different carbon structures and sintering rates, depending on the precursor compound employed.  相似文献   

12.
With naphthalene as biomass tar model compound, partial oxidation reforming (with addition of O2) and dry reforming of biomass fuel gas were investigated over nickel-based monoliths at the same conditions. The results showed that both processes had excellent performance in upgrading biomass raw fuel gas. Above 99% of naphthalene was converted into synthesis gases (H2+CO). About 2.8 wt% of coke deposition was detected on the catalyst surface for dry reforming process at 750 °C during 108 h lifetime test. However, no coke deposition was detected for partial oxidation reforming process, which indicated that addition of O2 can effectively prohibit the coke formation. O2 can also increase the CH4 conversion and H2/CO ratio of the producer gas. The average conversion of CH4 in dry and partial oxidation reforming process was 92% and 95%, respectively. The average H2/CO ratio increased from 0.95 to 1.1 with the addition of O2, which was suitable to be used as synthesis gas for dimethyl ether (DME) synthesis.  相似文献   

13.
Ca1–x - x Sr x TiO3-based mixed oxide catalysts containing chromium, iron, cobalt or nickel were prepared and used in the oxidation of methane. The catalyst containing cobalt or nickel showed high activity for the synthesis gas production from methane. In the case of nickel containing catalyst, nickel oxide originally separated from the perovskite structure was easily reduced to nickel metal, which showed synthesis gas production activity. In the case of the cobalt containing catalyst, pretreatment with methane was required for high activity. Reduced metallic cobalt was formed from the perovskite structure, which revealed relatively high selectivity for the oxidative coupling of methane, and afforded synthesis gas production. Both the catalysts also catalyzed carbon dioxide reforming of methane and especially both high activity and selectivity were observed over the nickel containing catalyst.  相似文献   

14.
The partial oxidation of isobutene to methacrolein and methacrylic acid was studied on oxidic catalysts containing mainly a mixture of bismuth tungstate and iron-cobalt-potassium molybdate. Catalyst shaping was done by extrusion. The kinetic measurements were performed by monitoring the gas-phase composition along the length of a fixed bed of catalyst. The reactor was treated as an isothermal plug-flow system. The network of parallel and consecutive reactions taking place in this system can be described by a simplified scheme. It is possible to predict the gas-phase composition prevailing in the reactor using five different kinetic parameters. In the temperature range 380<<420°C grain selectivities as high as 85% combined with yields of methacrolein and methacrylic acid about 72% at 92% conversion were obtained.  相似文献   

15.
高亚娜 《工业催化》2014,22(5):369-373
甲烷部分氧化制备合成气反应过程具有反应速率快、能耗低和H2与CO物质的量比适用于合成甲醇及F-T合成等优点,是一种有希望替代传统水蒸汽重整的方法。研究在NiO/MgO蜂窝陶瓷整体式催化剂上的甲烷部分氧化过程,主要考察涂层载体、活性组分Ni含量、涂层载体前驱体、焙烧温度和还原温度对催化剂反应性能的影响。采用XRD、H2-TPR和N2吸附等表征前驱体及其负载活性组分NiO后的晶相、还原特性和吸附性能。结果表明,采用浸渍法制备催化剂时,Mg(NO3)2为涂层载体MgO前驱体,在NiO负载质量分数20%、焙烧温度(500~600) ℃和还原温度750 ℃条件下制备的催化剂NiO/MgO-N性能较好,活性较稳定;以NiO/MgO-N为催化剂,在反应温度800 ℃、n(O2)∶n(CH4)=0.5和空速9 723 h-1条件下,CH4转化率94.4%,H2选择性99.9%,CO选择性92.9%。  相似文献   

16.
Silica supported K2MoO4 and potassium-promoted MoO3 were used as catalysts for the partial oxidation of ethane in fix-bed continuous-flow reactor at 770–823 K using N2O as oxidant. The main products of the oxidation reaction were ethylene, acetaldehyde, CO and CO2. Addition of various compounds of potassium to the MoO3/SiO2 greatly enhanced the conversion of ethane and influenced the product distribution. The highest rate and selectivity for acetaldehyde formation was found on a K2MoO4/SiO2 catalyst.  相似文献   

17.
B. Kerler  A. Martin   《Catalysis Today》2000,61(1-4):9-17
The catalytic partial oxidation of propane in supercritical carbon dioxide has been investigated in a stirred batch reactor. Various metals (oxides) have been used as supported catalysts with respect to their activity and selectivity for the formation of oxygenates. The reactions run with a 1:2.3–2.9:68–108 molar ratio of propane:synthetic air:CO2 at 453–573 K and 80–100 bar. Using a precipitated 2.4 wt.% Co3O4–SiO2 catalyst at 573 K, a total oxygenate (i.e. acetic acid, acetone, acetaldehyde, methanol) selectivity of 59% and a propene selectivity of 21% were obtained at a propane conversion of 12 mol%. The same catalyst has been used to investigate the influence of the supercritical conditions and initial feed composition on the reaction, varying the density of CO2 and the concentration of synthetic air, respectively.  相似文献   

18.
Vanadium-containing hexagonal mesoporous silica catalysts were tested in oxidative dehydrogenation of ethane. V-HMS catalysts (0.3–9.0 wt.% V) were prepared by impregnation with solution of vanadyl acetylacetonate, and by incorporation of vanadium in the synthesis process. The prepared catalysts achieved a different distribution of vanadium species (isolated monomeric units with tetrahedral coordination, oligomeric units connected by VOV bonds up to distorted tetrahedral coordination, two-dimensional polymeric units in octahedral coordination, and bulk vanadium oxides). The contribution deals with the understanding of the relationship between the distribution of vanadium species and their activity in ODH of ethane. It has been found that both monomeric and oligomeric vanadium species play important role in ODH of ethane. The activity correlated with the population of oligomeric tetrahedrally coordinated vanadium species, which were evidenced by the UV–vis band at 315 nm. To analyze this effect, V-HMS catalysts were characterized by means of UV–vis spectroscopy, H2-TPR and N2-adsorption.  相似文献   

19.
The state of isolated copper ions in Cu-ZSM-5 containing additions of La, Ce, and Co was monitored in-situ by ESR under flow conditions. Treatment by steam at 630°C for 17 h or high-temperature dry calcination at 850°C induce an irreversible change in coordination for practically all square-planar Cu2+ ions in mono-cationic Cu-ZSM-5 without agglomeration or encapsulation of the isolated ions. All Cu2+ ions remain accessible to gas-phase molecules, but the catalytic reactivity of these altered copper sites decreases drastically. A stabilizing effect is noted for samples modified by a relatively large amount, ca. 5.0 wt.-%, of multivalent rare-earth ions La or Ce. Here a part of the copper ions (20–30%) preserves the parent square-planar Cu2+ state even after calcination at 850°C for 0.5 h. The effect of ca. 1% La or Ce is much less pronounced. The catalytic activity in the complete oxidation of ethane correlates well with the number of square-planar cupric cations retained by the samples after different treatments. The introduction of cobalt sharply increases the ethane oxidation activity of samples calcined at 500–650°C.  相似文献   

20.
In this study, performance of nano-structure Ni over different zeolite supports in partial oxidation of butane was investigated. First, partial oxidation process was performed without catalyst to evaluation of optimal conditions. For in situ reduction of catalysts, H2 produced from homogenous reaction was used. Catalytic partial oxidation was carried out using nano-structure nickel catalysts supported by ZSM5, mordenite and Y. Each catalyst was synthesized through reverse microemulsion method. The catalysts were characterized by BET surface area, XRD, SEM and TGA. Highest butane conversion (≈89%) observed in the presence of Ni/Y catalyst. Also Ni/Y shows the highest overall selectivity to CO and H2 as the most desired partial oxidation products. Results from TGA showed that the minimum quantity of formatted coke was related to Ni/Y, which confirmed the stability of butane conversion versus time for this catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号