首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zr1—xTix(Ni0.6Mn0.3V0.1Cr0.05)2(x=0~0.5)Laves相储氢合 …   总被引:1,自引:0,他引:1  
本文研究Zr1-xTix(Ni0.6Mn0.3V0.1Cr0.05)2(x=0,0.1,0.2,0.3,0.4,0.5)系Laves相储氢电极合金的气态P-C-T性能、晶体结构及电化学性能。XRD分析表明,Ti合金化使Zr基储氢合金主相从C15相转变为C14相。当x〉0.2时,第二相Zr7Ni10相消失,并出现TiNi相。Ti合金化使Zr基储氢合金中C15相和C14相的晶格常数线性递减。气态P-C  相似文献   

2.
(Ti0.1V0.9)1-xFex(x=0~0.06)合金的相结构及储氢性能   总被引:1,自引:0,他引:1  
系统研究了(Ti0.1V0.9)1-xFex(x=0、0.02、0.04、0.06)合金的相结构及其储氢性能.XRD及SEM分析表明,所有合金均由单一的体心立方(BCC)结构的钒基固溶体相组成;随着Fe含量的增加,合金的点阵常数呈线性递减,晶胞体积也随之逐渐降低.储氢性能测试表明,该系列合金的动力学性能均比较好,在10℃和4MPa初始氢压条件下,合金无需氢化孕育期就能吸氢.随着Fe含量从x=0增加至x=0.06,合金的活化性能得到改善;10℃最大吸氢量则从509.5ml/g逐渐降至424.8ml/g;而50℃有效放氢量先升后降,并在x=0.04时达到最高值255.6ml/g.在所研究的合金中,Ti0.096V0.864Fe0.04合金具有最佳的综合性能,经2次吸放氢循环即可活化,10℃最大吸氢量为494.5ml/g,50℃有效放氢量达到255.6ml/g.  相似文献   

3.
本文以感应熔炼法制备的La_(1-x)Mg_xNi_(2.5)Co_(0.5)(x=0~0.4)储氢合金作为研究对象,探究了熔炼过程中合金成分的损耗情况。通过对合金质量损耗的填补,并结合AES-ICP等测试手段,比较精确地制备出了目标合金。根据合金充放电前后的X射线衍射(XRD)测试结果,发现合金的氢化物随着Mg含量的增高而逐渐由非晶态转化成晶态,晶态氢化物由合金的α相转化成氢化物的β相。合金氢化物的晶胞参数a和c均显著增大,晶胞体积也有较大膨胀,但增大幅度却随着Mg含量的增加而逐渐减小。在0.1MPa干燥Ar保护条件下,填补0.9%的La和10.0%的Mg所制备的La_(0.7)Mg_(0.3)Ni_(2.5)Co_(0.5)合金不仅具有良好的电化学氢化性能和较大的放电容量,而且能够有效抑制合金的氢致非晶化。  相似文献   

4.
采用合金化的方法向富钛储氢合金FeTi1.2中添加少量LaNi5以形成四元系合金FeTi1.2 xwt%LaNi5来改善FeTi1.2合金的储氢性能,虽然XRD没有检出合金中有LaNi5相的存在,但是FeTi1.2合金的储氢性能特别是活化性能得到了改善,FeTi1.2 xwt%LaNi5合金还具有较高的储氢量,293K吸氢的FeTi1.2 2wt%LaNi5合金在333K时的放氢量为186.4ml/g,明显超过FeTi1.2合金的172.3ml/g。  相似文献   

5.
采用磁悬浮感应熔炼方法制备了Ti_(10)V_(83-x)Fe_6ZrMn_x(x=0、2、4、6)储氢合金,系统研究了Mn含量对合金微观结构和储氢特性的影响.XRD及SEM分析表明,无Mn合金(x=0)具有体心立方(bcc)结构的Ti-V基固溶体单相结构,而含Mn合金(x=2~6)均由bcc主相和C14型Laves第二相组成;随着Mn含量的增加,合金bcc主相的晶格常数和晶胞体积逐渐减小.储氢性能测试表明:该系列合金的吸氢动力学性能较好,在室温和4MPa初始氢压条件下,含Mn合金无需氢化孕育期就能快速吸氢;随着Mn含量的增加,合金的P-C-T放氢平台倾斜度逐渐减小,333K放氢平台压力先增后减,并在x=4达到最高;但合金的室温吸氢容量和333K有效放氢容量随Mn含量的增加而逐渐降低.  相似文献   

6.
采用真空电弧炉(在氩气保护下)制备Zr1-xTixMn0.4Cr0.4Ni1.2贮氢合金,通过XRD、SEM和恒流充放电研究了合金的相结构、形貌和电化学性能。结果表明:Ti为C14型Laves相的稳定性元素,随着Ti含量的增加,C14型Laves相增多,C15型Laves相减少。当x=0.1时,合金综合性能最好,表现出良好的活化性能、循环稳定性能和高倍率放电特性,在放电电流300mA/g的条件下,充放电循环50次,合金保持稳定的放电容量。当X〉0.1时,合金放电容量下降。Ti的加入使合金氢化物稳定性降低,加入少量Ti,有利于合金的放电容量的提高和高倍率放电性能的提高。  相似文献   

7.
Cu的添加对Mg2Ni合金储氢性能的影响   总被引:1,自引:0,他引:1  
采用机械合金化法,制备了Mg2Ni1-xCux(x=0、0.1、0. 3)合金,研究了Cu对Mg2Ni储氢合金储氢性能的影响.XRD和SEM研究表明Cu的加入使合金中产生了Cu11Mg10Ni9新相.利用PCT测试仪测定了合金的储氢性能,结果表明,添加Cu元素会降低合金的吸氢量,但能有效地提高放电容量和循环稳定性.制备出的Mg2Ni0.9Cu0.1与Mg2Ni0.7Cu0.3相比,前者具有较大的吸氢量,后者的放电容量较大,循环稳定性较好.  相似文献   

8.
在Ar气保护下,采用高频感应悬浮炉制备La0.7-xPrxZr0.1Mg0.2Ni2.75Co0.45Fe0.1Al0.2(x=0.00,0.05,0.10,0.15,0.20)合金,研究Pr替代La对合金电极电化学性能的影响。结果显示,所有合金主要由LaNi5和La2Ni7相组成,以Pr替代La后,LaNi5相和La2Ni7合金相的晶胞收缩,导致氢原子在合金电极体内扩散受限,合金电极的动力学性能下降。但由于Pr的抗腐蚀作用,合金电极循环稳定性增加,经过200次充放电循环后容量保持率分别从66.2%(x=0.00)逐渐增加到69.5%(x=0.05)、73.2%(x=0.10)、74.0%(x=0.15)和75.1%(x=0.20)。  相似文献   

9.
通过X射线衍射谱(XRD)、扫描电镜(SEM)、X射线能谱(EDS)、气态吸放氢行为(PCT曲线)、电化学充放电性能、电化学阻抗谱(EIS)以及线性极化曲线,研究了Ni添加对Ti0.39V0.29Mno.12Cr0.2储氢合金电化学性能的影响。结果表明:Ti0.39V0.29Mno.12Cr0.2的电化学活性很差,在碱液中几乎不能放电,添加Ni之后得到明显改善。随着Ni含量的增加,Ti0.39V0.29Mno.12Cr0.2(x=0~0.2)合金电极的放电容量先增大后减小,在x=0.1时达到最大值273mAh/g。  相似文献   

10.
在Ar气的保护下,利用磁悬浮感应炉熔炼制备La_(0.7)Mg_(0.3-x)Li_xNi_(2.8)Co_(0.5)(x=0.00,0.05,0.10,0.15)合金,并研究Li部分取代Mg对La_(0.7)Mg_(0.3-x)Li_xNi_(2.8)Co_(0.5)(x=0.00,0.05,0.10,0.15)合金电化学性能的影响。研究结果发现,合金电极的最大放电容量依次为385mAh/g(x=0.00)、390mAh/g(x=0.05)、385mAh/g(x=0.10)和393mAh/g(x=0.15),经过100次充放电循环后,合金电极的容量保持率S100从39.7%(x=0.00)增加到42.1%(x=0.05),然后再下降到39.8%(x=0.10)和34.2%(x=0.15),而合金电极在放电电流密度为1200mA/g的高倍率放电性能HRD1200则从x=0.00的80%逐渐增大到x=0.15的82.8%。这充分说明以Li局部替代Mg,对LaMg-Ni合金电极的最大放电影响较小,但能提高合金电极的动力学性能,且适量的Li有利于改善合金电极的循环稳定性。  相似文献   

11.
邓安强  罗永春  王浩  赵磊  罗元魁 《材料导报》2018,32(15):2565-2570
利用高频感应熔炼法制备La0.63(Pr0.1Nd0.1Y0.6Sm0.1Gd0.1)0.2Mg0.17Ni3.1Co0.3Al0.1储氢合金,对铸态合金在900℃下退火热处理24h。结构分析表明,铸态合金微观组织由CaCu5型结构、Ce5Co19型结构及Ce2Ni7型结构三相组成,而退火合金则是单相Ce2Ni7型结构。铸态和退火合金电极均具有良好的活化性能,退火合金电极放电曲线更为平坦和宽阔。两种合金电极腐蚀电位基本一致,但铸态合金电极腐蚀电流更大。合金经过退火后其电极循环稳定性(S100=83.5%)明显优于铸态合金电极(S100=69%)。在100次电化学充放电循环内,低容量充电时,退火合金电极容量不衰减,合金电极容量衰减的充电容量临界点为活化最大放电容量(Cmax)的90%。铸态和退火合金电极动力学性能差别不大,铸态合金电极高倍率放电主要由氢在其体相中扩散控制,退火合金电极高倍率放电则主要由其表面电荷转移控制。  相似文献   

12.
李嵩  季世军  孙俊才 《功能材料》2004,35(3):308-311
研究了贮氢电极合金Zr1-xTixMin0.7V0.2Co0.1Ni1.2的相结构和电化学性能。结果表明,随着掺Ti量的增加,该合金主相中C15型Laves相含量逐渐减少而C14型Laves相含量逐渐增加,同时非Laves相Zr7M10和TiNi相全部消失,说明元素Ti掺杂量的增加抑制了第二相的产生。当含Ti量x=0.2时,该合金具有最大放电容量Cmax为354mAh/g,在放电电流为300mAh/g条件下,高倍率放电性能比母体合金提高了15%。而对于合金Zr0.75Ti0.2La0.05Mn0.7V0.2Co0.1Ni1.2,其活化性能被大大提高,只需4次就能达到最大放电容量372mAh/g,而且经过30次循环仍能保持最大放电容量的93%。  相似文献   

13.
张绪玉  罗永春  王大辉  闫汝煦  章应  康龙 《功能材料》2005,36(7):1034-1037,1040
研究了Al元素对合金La0.67Mg0.33Ni3.0中Ni的替代对舍金的微观组织结构及电化学性能的影响。X射线衍射(XRD)分析结果表明La0.67Mg0.33Ni3.0合金由PuNi3型(La,Mg)Ni3相和Ce2Ni2型(La,Mg)2Ni7相组成,Al元素加入后,开始出现CaCu5型LaNi5相,随着Al含量的增加,LaNi5相逐渐增多,当x=0.3时,LaNi5相成为合金的主相,合金La0.67Mg0.33Ni3.0中Al的X荧光元素面分布图像表明了Al元素主要进入LaNi5相中,说明Al是一种LaNi5相形成元素;电化学测试表明,随着Al含量的增加,合金的最大放电容量依次下降,4种合金的最大放电量分别为392、324、267和252mAh/g,活化次数变化不大(2~3次即可活化),循环稳定性先增加后下降。  相似文献   

14.
研究了(Ti-Cr)10V55Zr5储氢合金在真空热处理(1473 K下保温2 h和6 h)改性前后的相结构及储氢性能.XRD及SEM分析表明,(Ti-Cr)40V55Zr5铸态合金由BCC结构的固溶体主相和ZrCr2基第二相组成;经过热处理后,合金的BCC主相的晶胞体积有所增大,除了BCC主相和ZrCr2基第二相外,还出现微量的富Ti第三相.储氢性能测试表明,热处理后(Ti-Cr)40V55Zr5合金的动力学性能和活化性能均得到改善,室温最大吸氢量略微降低,但P-C-T曲线放氢压力平台倾斜度降低,平台宽度稍有增大,80℃有效放氢量增大.研究表明,在1473 K下经2 h热处理改性的(Ti-Cr)40V55Zr5合金具有较好的综合性能,首次吸氢即可活化,室温吸氢量为401 ml·g-1,80℃有效放氢量达到240 ml·g-1.  相似文献   

15.
采用真空电弧熔炼和均匀化退火制备La0.3Y0.7Ni3.4-xMnxAl0.1(x=0~0.5)储氢合金,采用不同方法系统研究了Mn元素对合金微观结构、储氢和电化学性能的影响规律和作用。结果表明,退火合金微观组织与Mn含量关系密切,提高Mn含量有利于合金组织形成Ce2Ni7型相,当x≥0.3时,合金形成Ce2Ni7型结构单相组织。随Mn含量增加, Ce2Ni7型主相晶胞参数a、c及晶胞体积V均依次增大,导致合金吸氢平台压从0.079 MPa降至0.017 MPa,储氢量达到1.268wt%~1.367wt%。添加Mn元素能显著改善合金的电化学性能,x=0.1的合金电极的放电容量最高(390.4 mAh·g^-1);x=0.15和0.5的合金电极的容量保持率S100分别为86.1%和88.5%,具有较好的循环稳定性。上述合金电极的高倍率放电性能HRD900为71.53%~87.73%。分析结果表明,合金电极反应动力学过程由电极/溶液界面的电子转移与体相中的氢原子扩散共同控制。  相似文献   

16.
研究了Ce2Ni7型贮氢合金La1.5Mg0.5Ni7-xCux(x=0.1-1.2)的组织结构和电化学性能。当X=0.1—0.6时Cu元素部分替代Ni后可形成La2Ni7型相,x≥0.9时,合金中则有少量的未知相析出。合金MH电极电化学研究表明,随Cu元素量的增加,合金电极的最大放电容量从380mAh/g(x=0.1)下降至340mAh/g(x=1.2);当x=0.3~0.9时合金电极的循环寿命较x=0.1时有一定的改善,合金电极交换电流密度(I0)和极限电流密度(I1)均以x=0.6为转折点先减小后增大。电极反应的动力学性能依Cu0.1〉Cu0.3〉Cu1.2〉Cu0.9〉Cu0.6的次序递减。  相似文献   

17.
对比研究了铸态和退火态ReNi3.5Co0.3Mn0.3Al0.4Fe0.5—xSnx(x=0—0.4)贮氢合金的相结构和电化学性能。XRD分析表明,铸态和退火态的无Sn合金均为单相CaCu5型结构;而在含Sn合金中,除CaCu5型结构的主相之外,还存在有LaNiSn第二相,且第二相的含量随合金Sn含量(x)的增加而增多;退火处理可以减少含Sn合金中第二相的含量。电化学测试表明,Sn含量对铸态合金的活化性能没有影响,但Sn含量的增加会导致合金的放电容量降低;退火处理可使Sn含量x≤0.2的合金的活化次数及放电容量略有增加,但使Sn含量更高(x>0.2)的合金的活化性能及放电容量明显降低。随Sn含量x的增加,铸态合金的放电电位平台、高倍率放电性能及循环稳定性均有所降低;退火处理能显著改善含Sn合金的放电电位平台和循环稳定性,但使合金的高倍率放电性能进一步降低。  相似文献   

18.
研究了镧(La)-镁(Mg)-钛(Ti)-镍(Ni)-钴(Co)[La_(0.7)Mg_(0.3-x)Ti_xNi_(2.5)Co_(0.5)(x=0~0.15)]储氢合金的相结构与电化学性能衰退机理。结果显示,合金的主相均为(La,Mg)Ni_3相,但随着Ti含量的增加,合金中逐渐产生了TiNi相而形成复相。合金经90次循环后的放电容量保持率从x=0条件下的56.5%增加至x=0.10条件下的62.0%,再下降至x=0.15条件下的60.8%,这与交换电流密度的变化规律一致。Ti对Mg的替代能够提高合金的耐蚀性,但过量的Ti会阻碍电极与电解液之间的界面反应,造成放电容量的衰退。  相似文献   

19.
采用烧结-机械球磨二步法制备了Mg2Ni、Mg1.7Al0.3Ni、Mg2Ni0.8Cr0.2、Mg0.8Al0.2Ni0.8Cr0.2储氢合金材料,研究了Al、Cr元素的加入对Mg2Ni储氢合金电化学储氢性质的影响。研究结果表明,适量Al元素的加入能改善储氢合金电极的电化学储氢性质,cr元素的加入能较好地改善循环稳定性,Al元素和cr元素同时加入会产生协同改性作用。认为Al、Cr元素协同改性作用的机理是:Cr元素的加入使得元素在合金化过程中避免形成A13Ni2非吸氢相,而形成Mg3A1Ni2吸氢相,因此储氢合金容量没有下降反而增加;A1元素能降低合金电极腐蚀的原因是形成了保护性表面氧化物Al2O3,Cr元素能大幅度提高合金电极吸傲氢循环稳定性的原因是由于cr原子半径比Ni原子半径大,发生取代后会引起晶格参数增大,增强了储氢合金抗粉化能力。  相似文献   

20.
研究了三元Ti38Zr45Ni17准晶合金及其V合金化后的四元合金(Ti0.38Zr0.45Ni0.17)100-xVx(x=5%、10%、30%、40%、60%(原子分数))的吸放氢性能.准晶成分设计思想源自于团簇线方法,即在Ti-Zr-Ni三元合金体系中利用两条团簇线的交点确定最佳准晶成分Ti38Zr45Ni17.利用铜模吸铸快冷工艺制备直径为3mm的合金棒.吸放氢测试结果表明,Ti38Zr45Ni17准晶在303K首次吸氢量为0.9%(质量分数),在573K时合金首次吸氢量可达2.38%(质量分数),合金吸氢过程快速完成,并放出大量的热,可将吸氢前的粉末样品烧结成块体凝聚物.吸氢后准晶结构消失,完全转化为氢化物结构.添加5%~30%(原子分数)的V进行合金化时可提高合金在573K下的首次吸氢量,最大为2.96%(质量分数);具有固溶体结构的(Ti0.38Zr0.45Ni0.17)40V60合金在室温下首次吸氢量为3.2%(质量分数).由于准晶及其V合金化的合金在吸放氢之后均形成了稳定的氢化物,导致其放氢非常困难.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号