首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 73 毫秒
1.
李江鸿  熊翔  黄伯云 《材料保护》2004,37(Z1):73-76
以炭纤维针刺毡为预制体,采用CVI法并结合液相法制备了热解炭与树脂炭为基质炭的准三维C/C复合材料,并研究了这种材料在不同刹车速度下的摩擦磨损性能.研究表明:C/C复合材料热解碳结构为粗糙层,材料的摩擦磨损性能随刹车速度变化而变化,摩擦系数在刹车速度为10 m/s时达最大值,磨损量随刹车速度的增加而增加,而氧化磨损在25 m/s时开始大量产生,28 m/s的最大刹车速度时达最大值;X射线检测发现刹车后摩擦面碳结构有序度比次摩擦面低,且随着刹车速度的增大,这种降低程度依次增大.  相似文献   

2.
C/C刹车材料的摩擦磨损性能与机理   总被引:9,自引:1,他引:8  
简要介绍了C/C复合材料在刹车领域的应用,综述了几十年来人们以C/C刹车材料摩擦磨损性能与机理的研究结果,对C/C复合材料的摩擦磨损特征和影响摩擦磨损性能的一些因素作了介绍。  相似文献   

3.
金属填充PTFE复合材料的摩擦磨损性能研究   总被引:21,自引:0,他引:21  
利用MHK-500型环块磨损实验机,对金属Cu、pb及Ni填充改性的PTEFE复合材料在干摩擦条件下与GCr15轴承钢对摩时的摩擦磨损性能进行了系统研究,并利用JEM-1200EX/S分析电子显微镜和光学显微镜对PTEE复合材料的磨屑及摩擦磨损表面进行了考察。摩擦磨损实验的结果表明,金属填料Cu、Pb及Ni大大改善了PTFE复合材料的耐磨性,PTFE复合材料的磨损量比纯PTFE降低了1-2个数量级  相似文献   

4.
C/C复合材料摩擦磨损性能研究   总被引:5,自引:0,他引:5  
综述了国内外对C/C复合材料摩擦磨损性能的研究现状.指出C/C复合材料的摩擦磨损机理为机械磨损和氧化磨损,在高温下(500℃以上)C/C复合材料的磨损是机械磨损和氧化磨损共同作用的结果,而氧化是磨损的根本原因;影响C/C复合材料摩擦磨损性能的因素有材料本身的因素,如复合材料的热解炭结构、密度、石墨化度、防氧化涂层等,也有实际操作条件的因素如刹车环境、刹车过程中的刹车速度、刹车能量等.提出对不同工艺制备的C/C复合材料的摩擦磨损性能有待于进一步研究.  相似文献   

5.
利用空气气氛下的无压渗透法制备了高体积分数的SiCp/Al复合材料,研究了颗粒粒径、基体合金成分、预处理工艺对复合材料抗弯性能的影响,并采用SEM观测了复合材料抗弯断口形貌.结果表明,SiCp/Al复合材料的抗弯强度随着SiC颗粒粒径减小而增大;基体材料的强度越高,复合材料的抗弯强度越高;复合材料整体上表现出脆性断裂的特征.  相似文献   

6.
三维针刺C/SiC刹车材料的摩擦磨损性能   总被引:1,自引:1,他引:0       下载免费PDF全文
通过化学气相渗透法(CVI)结合反应熔体浸渗法(RMI)制备了三维针刺,C/SiC刹车材料 , 利用 MM21000型摩擦磨损试验机系统研究了C/SiC刹车材料的摩擦磨损性能,采用光学显微镜和扫描电子显微镜分别对摩擦表面和磨屑形貌进行了观察。结果表明:干态刹车条件下,当初始刹车速度相同时,摩擦系数随着刹车压力的升高而逐渐降低;当刹车压力相同时,摩擦系数随着初始刹车速度的增加先升高后降低。湿态摩擦性能衰减小(衰减约8 %) 、恢复快;静态摩擦系数高(为0. 56~0. 61),摩擦系数随着初始刹车温度的升高而显著降低。当刹车压力相同时,磨损率随着初始刹车速度的增加而增大;当初始刹车速度大于20 m/s时,刹车压力的增大使磨损率显著增加。   相似文献   

7.
为实现SiCp/Al复合材料的高质量可靠焊接,推广SiCp/Al复合材料在各领域的应用,调研了国内外SiCp/Al复合材料不同焊接方法的研究现状。在熔化焊方面,国内外学者通过调整工艺参数、在焊缝中加入Ti元素发生诱发反应等方法,抑制了焊缝中Al4C3针状脆性相的形成,从而提高了焊接接头的力学性能。在搅拌摩擦焊方面,国内外学者针对不同材料设计了专用的焊接搅拌头,以保证它们具备高耐磨性与足够的冲击韧性,在焊接过程中不出现破损情况;关注了焊接过程中焊接头转速、焊接速度、轴向力与热输入等因素,以获得力学性能优秀、晶粒细小均匀的焊接接头。在扩散焊方面,国内外学者探究了中间夹层对焊缝界面间原子相互扩散的促进作用;采取不同工艺参数,以外加超声或电子束表面加热等方式促进了原子间的相互扩散,以获得力学性能优异的焊接接头,提高焊接效率。在钎焊方面,国内外学者通过探究钎料与SiCp/Al复合材料之间的润湿性来组合钎料与钎剂,通过化学腐蚀处理表面暴露颗粒增强相、在复合材料表面电镀金属等方法来增大钎料与增强相的润湿性、解决钎料铺展受阻的问题,以进一步提高钎焊焊接接头质量。  相似文献   

8.
SiCp与Gr混杂增强Al基复合材料的制备和摩擦磨损性能   总被引:7,自引:1,他引:6  
利用真空压力浸渍工艺制备了SiCp增强和SiCp、Gr混杂增强铝基复合材料,Gr能降低复合材料的摩擦系数,减少偶件的磨损,但Gr的片状和针状外表对其耐磨性不利。  相似文献   

9.
采用冷压烧结和热挤压方法制备出1. 5~5 vol % SiCP (130 nm) / Al (149~75μm) 复合材料, 并对其抗压、硬度和滑动磨擦特性进行了研究, 旨在研究引入弥散的亚微米级SiCP 对SiCP / Al 复合材料磨擦性能的影响。结果表明: 随着SiCP (130 nm) 含量的增加, 其显微硬度值也增加, 在SiCP (130 nm) 含量为1. 5 vol %和5 vol %时,SiCP (130 nm) Al 复合材料显微硬度分别为28. 4 和33. 3 ; 复合材料的抗压强度分别是170 MPa 和186 MPa ; 在较高载荷下, 随SiCP 含量增加, 复合材料的耐磨性能提高, 1. 5 vol % 和5 vol % SiCP / Al 基复合材料具有优异的滑动磨损抗力, SiCP / Al 基复合材料耐磨性优于挤压态QSn6. 520. 4 和纯Al ; 磨损表面形成Al 基体弥散分布着SiCP和孔隙的理想耐磨组织。   相似文献   

10.
以亚微米级(130nm)SiCp和微米级(200目)Al粉为原料,采用冷压烧结和热挤压方法制备出体积含量分别为1.5%、5%亚微米SiCp增强Al基复合材料,研究了复合材料的硬度、拉伸、及耐磨性能.结果表明:随SiCp含量的增加,抗拉强度从170MPa降到156MPa,伸长率从33.4%下降到30.9%,其耐磨损性分别是Al的0.78~1.10倍和0.92~3.66倍,其耐磨机理是其磨损表面和次表面在摩擦推挤形变的作用下形成了Al基体 尺寸适中、近球状、分布弥散SiCp的理想耐磨减摩组织.  相似文献   

11.
无压浸渗法制备不同体积分数及梯度SiCp/Al复合材料   总被引:1,自引:1,他引:0  
陈续东  崔岩 《材料工程》2006,(6):13-16,39
选用不同粒径大小的SiC颗粒,并通过对颗粒分布的有效控制,采用无压浸渗工艺制备了不同体积分数(15%~65%)的SiCp/Al复合材料,并在此基础上试制了梯度SiCp/Al复合材料.运用OM,XRD等手段对所制备的复合材料进行了显微组织观察与成分分析,并对选定体积分数的复合材料进行了密度以及力学测试.研究结果表明,无压浸渗工艺下不同体积分数的SiCp/Al复合材料组织均匀、致密,力学性能良好;具有梯度结构的SiCp/Al复合材料层间结合良好,没有层间剥离现象.  相似文献   

12.
SiC/Al复合材料的摩擦学特征   总被引:2,自引:0,他引:2  
综合评述了SiC(颗粒、晶须)增强铝复合材料摩擦磨损行为,讨论了增强体的几何形状,位向,含量,尺寸和种类以及材料的热处理制度,载荷和滑动速度对磨损行为的影响,对磨损机制的综合分析指出,金属基复合材料中的磨损,主要是磨粒磨损和粘着磨损,而亚表层裂纹的形成和扩展引起的脱层是磨损的本质所在。  相似文献   

13.
The influences of volume fraction and particle size of SiC particulate reinforcements on the corrosion characteristics of SiCp/2024Al metal matrix composites in aerated 3.5wt pct NaCl aquecus solution were investigated.The electro-chemical behavior was investigated by prtentiodynamic polarization and electrochemical impedance spectroscopy, the general corrosion behavior of the composites was studied further by immersion tests.The results showed that pitting susceptibility was about the same for the composites and the alloy.The corrosion potentials were also independent of SiC phase.The corrosion resistance for the composites decreased as the volume fraction increased or particle size decreased.  相似文献   

14.
在Gleeble-3500热模拟实验机上对机械超声搅拌法制备的SiCp/Al复合材料进行高温压缩变形实验,研究其高温热变形行为.变形温度为300~500℃,应变速率为0.0005~0.1 s-1,在实验数据的基础上,引入Z-H参数建立了用于描述复合材料高温热变形行为的本构关系模型.研究表明:流变应力开始随应变的增加而增大,出现峰值后逐渐减小并趋于平稳,表现出流变软化特征;应力峰值随温度的升高而减小,随应变速率的增大而增大.  相似文献   

15.
7075Al/SiCp复合材料的热压缩变形流变应力和组织行为   总被引:3,自引:0,他引:3  
李红章  张辉  陈振华  何玉松 《材料导报》2006,20(Z1):271-272,284
采用圆柱试样在Gleeble-1500热模拟机上对喷射沉积7075Al/SiCp复合材料进行高温压缩变形实验,实验条件为:变形温度300~450℃,应变速率0.001~1s-1.结果表明:7075Al/SiCp复合材料的流变应力大小受到变形温度和应变速率的强烈影响,流变应力随应变的增加而逐渐增加,出现一峰值后逐渐下降;流变应力随变形温度的升高、应变速率的降低而降低.可用Zener-Hollomon参数的双曲正弦形式来描述7075Al/SiCp复合材料高温压缩变形流变应力.随着变形温度的升高和应变速率的降低,7075Al/SiCp复合材料热变形过程中SiCp的分布逐渐均匀化,有利其热加工性能的改善.  相似文献   

16.
The present work is focused on optimization of machining characteristics of Al/SiCp composites.The machining characteristics such as specific energy,tool wear and surface roughness were studied.The parameters such as volume fraction of SiC,cutting speed and feed rate were considered.Artificial neural networks(NN) was used to train and simulate the experimental data.Genetic algorithms(GA) was interfaced with ANN to optimize the machining conditions for the desired machining characteristics .Validation of optimized results was also performed by confirmation experiments.  相似文献   

17.
无压渗透法是制备SiCp/Al复合材料的重要技术.应用实验方法系统地研究了无压渗透法的工艺参数和添加元素对制备工艺的影响.结果表明,在无压渗透法制备SiCp/Al复合材料的工艺过程中,浸渗温度是浸渗过程顺利进行的重要因素,900℃的浸渗温度为最佳浸渗温度.适量加入Mg元素能提高熔融金属Al和增强体SiC颗粒之间的浸润性,获得结合强度好、孔洞和疏松较少的SiCp/Al复合材料,Mg元素的最佳含量约为1.2%(质量分数).适量添加Si元素能增强熔融铝液的流动性,降低SiC颗粒与Al液间的表面张力,改善其润湿性.  相似文献   

18.
SiCp/Al电子封装复合材料的现状和发展   总被引:7,自引:1,他引:7  
随着微电子技术的高速发展,SiCp/Al作为新型的电子封装材料受到了广泛的重视。根据近年来报导的有关资料,对SiCp/Al电子封装复合材料的性能、制备工艺及应用发展进行了综述,并指出了未来的研究方向。  相似文献   

19.
几种共聚型聚酰亚胺薄膜的摩擦学性能研究   总被引:1,自引:0,他引:1  
多年来,对共聚型聚酰亚胺薄膜的摩擦学研究报道较少,为了对其摩擦学应用提供试验依据,以均苯四甲酸酐、邻苯二胺、间苯二胺和对苯二胺为原料,利用具有不同组成的2种二胺的混合溶液与以均苯四甲酸酐进行反应,通过2步法在玻璃表面制备了共聚型聚酰亚胺薄膜.采用热分析仪考察了聚酰亚胺薄膜的热稳定性,用DF-PM型动静摩擦因数精密测定装置考察了其摩擦学性能.结果表明,由邻苯二胺以及邻苯二胺含量较高的混合溶液与以均苯四甲酸酐反应得到的聚酰亚胺薄膜的摩擦学性能明显优于由其他物质制成的聚酰亚胺的性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号