首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydroceramic compositions in the CaO-Al2O3-SiO2-H2O (CASH) system have potential as geothermal well sealants as well as autoclaved construction materials. We report new data on phase compositions and reaction rates in hydrothermal syntheses at 200 °C and 250 °C using a commercial API Class G oilwell cement alone, and at 200 °C with additions of silica flour and of corundum (alumina). Curing times were in the range 1-240 h. We use both ex-situ laboratory X-ray diffraction and in-situ synchrotron energy-dispersive X-ray diffraction to track rates of reaction. When cement only is hydrated, jaffeite, α-C2SH and portlandite are formed. When silica flour is added a precursory gel forms prior to the crystalline calcium silicate hydrate phases xonotlite and gyrolite. Both XRD and EDD data suggest that the addition of silica flour retards the hydration of the cement at early times (< 24 h). In alumina-containing systems the rate of consumption of clinker phases is the same as in cement only systems. Jaffeite and α-C2SH occur as intermediates but the major end product is a siliceous katoite-type hydrogarnet. Quantitative phase analysis using Rietveld refinement of ex-situ diffraction data gives results which are mostly consistent with stoichiometric constraints in all three systems examined here.  相似文献   

2.
1H NMR has been used to characterise white Portland cement paste incorporating 10 wt.% of silica fume. Samples were measured sealed throughout the hydration without sample drying. Paste compositions and C–S–H characteristics are calculated based on 1H NMR signal intensities and relaxation analysis. The results are compared with a similar study of plain white cement paste. While the presence of silica fume has little influence on C–S–H densities, the chemical composition is impacted. After 28 days of sealed hydration, the Ca/(Si + Al) ratio of the C–S–H is 1.33 and the H2O/(Si + Al) ratio is 1.10 when 10% of silica fume is added to the white cement. A densification of the C–S–H with time is observed. There are no major changes in capillary, C–S–H gel and interlayer pore sizes for the paste containing silica fume compared to the plain white cement paste. However, the gel/interlayer water ratio increases in the silica fume blend.  相似文献   

3.
A cold-setting refractory material was developed using the magnesia-phosphate reaction. A cement paste based on alumina, silica fume, magnesia and orthophosphoric acid or monoaluminum phosphate was designed to form cordierite-mullite during heating. This cement paste set at room temperature and MgHPO4·3H2O phase (newberyite) was observed, but amorphous phases were predominant. Two exothermic effects were detected during the setting process corresponding to the acid-base reaction of magnesia with phosphates and to the formation of bonding hydrates. At 1100 °C, C-AlPO4 was formed by reaction of alumina with orthophosphoric acid or monoaluminum phosphate. At 1350 °C, the principal crystalline phases were cordierite and mullite. A refractory concrete with the obtained cement paste and a cordierite-mullite aggregate (scrap refractory material) was prepared. At 1350 °C, this concrete had a thermal expansion coefficient of 1.0×10−6 °C−1 and a flexural strength of 10 MPa.  相似文献   

4.
Magnesium silicate hydrate (M-S-H) gel is formed by the reaction of brucite with amorphous silica during sulphate attack in concrete and M-S-H is therefore regarded as having limited cementing properties. The aim of this work was to form M-S-H pastes, characterise the hydration reactions and assess the resulting properties. It is shown that M-S-H pastes can be prepared by reacting magnesium oxide (MgO) and silica fume (SF) at low water to solid ratio using sodium hexametaphosphate (NaHMP) as a dispersant. Characterisation of the hydration reactions by x-ray diffraction and thermogravimetric analysis shows that brucite and M-S-H gel are formed and that for samples containing 60 wt.% SF and 40 wt.% MgO all of the brucites react with SF to form M-S-H gel. These M-S-H cement pastes were found to have compressive strengths in excess of 70 MPa.  相似文献   

5.
The hydration of tricalcium silicate (C3S) is accelerated by pressure. However, the extent to which temperature and/or cement additives modify this effect is largely unknown. Time-resolved synchrotron powder diffraction has been used to study cement hydration as a function of pressure at different temperatures in the absence of additives, and at selected temperatures in the presence of retarding agents. The magnitudes of the apparent activation volumes for C3S hydration increased with the addition of the retarders sucrose, maltodextrin, aminotri(methylenephosphonic acid) and an AMPS copolymer. Pressure was found to retard the formation of Jaffeite relative to the degree of C3S hydration in high temperature experiments. For one cement slurry studied without additives, the apparent activation volume for C3S hydration remained close to ~ ? 28 cm3 mol? 1 over the range 25 to 60 °C. For another slurry, there were possible signs of a decrease in magnitude at the lowest temperature examined.  相似文献   

6.
The effect of a high-performance retarding additive in oil well cements was investigated under elevated temperature (165°C) and pressure (1000 psi) conditions via in situ synchrotron-based X-ray diffraction (XRD) and quasielastic neutron scattering (QENS) techniques. Under these temperature and pressure conditions, crystalline calcium silicate hydrates (C–S–H) are formed through the cement hydration process. From in situ XRD experiments, the retardation effect was observed by a change in the rate of the appearance of 11 Å tobermorites as well as a change in the rate of the α-C2SH generation and depletion. QENS analysis revealed that the retardation effect was related to the non-conversion of free water to chemical and constrained water components. A high presence of free water components was attributed to a decrease in 11 Å tobermorites along with slower consumption of the quartz and portlandite phases. Furthermore, QENS results infer that the water molecules experienced confinement in the restricted pore spaces. The retarder inhibited this initial water confinement by slowing the bulk diffusion of free water in the confined region.  相似文献   

7.
The composition and structure of the calcium‐silicate‐hydrate (C–S–H) phases formed by hydration of white portland cement–metakaolin (MK) blends have been investigated using 27Al and 29Si MAS NMR. This includes blends with 0, 5, 10, 15, 20, 25, 30 wt% MK, following their hydration from 1 d to 1 yr. 29Si MAS NMR reveals that the average Al/Si ratio for the C–S–H phases, formed by hydration of the portland cement–MK blends, increases almost linearly with the MK content but is invariant with the hydration time for a given MK content. Correspondingly, the average aluminosilicate chain lengths of the C–S–H increase with increasing MK content, reflecting the formation of a C–S–H with a lower Ca/Si ratio. The increase in Al/Si ratio with increasing MK content is supported by 27Al MAS NMR which also allows detection of strätlingite and fivefold coordinated aluminum, assigned to AlO5 sites in the interlayer of the C–S–H structure. Strätlingite is observed after prolonged hydration for MK substitution levels above 10 wt% MK. This is at a somewhat lower replacement level than expected from thermodynamic considerations which predict the formation of strätlingite for MK contents above 15 wt% after prolonged hydration for the actual portland cement–MK blends. The increase in fivefold coordinated Al with increasing MK content suggests that these sites may contribute to the charge balance of the charge deficit associated with the incorporation of Al3+ ions in the silicate chains of the C–S–H structure.  相似文献   

8.
The extent of reaction between magnesium oxide (MgO) and silica fume (SiO2) is normally limited and mixes require high water contents to give suitable rheology. The use of considerably lower water contents and the formation of magnesium silicate hydrate (M-S-H) gel as a binding phase is made possible by adding sodium hexametaphosphate (Na-HMP) to the mix water prior to the addition of MgO and SiO2. This results in the formation of extensive reaction products and cured samples with high compressive strength and low porosity. In this work, the effect of Na-HMP on the hydration of MgO/SiO2 mixes is investigated using high water to solids ratio samples to allow monitoring of pH and the solution chemistry during hydration. It is shown that a relatively small amount of Na-HMP inhibits the formation of Mg(OH)2 when MgO is hydrolyzed. It is proposed that this is due to adsorption of phosphate species on the MgO which inhibits the nucleation of the Mg(OH)2. This gives rise to high Mg2 + species in solution and elevated pH (> 12) conditions relative to when Mg(OH)2 forms. In contrast, the phosphate does not suppress formation of M-S-H gel. In combination with the enhanced dissolution rate of SiO2 at high pH, M-S-H gel can form quickly without competition for Mg2 + ions by Mg(OH)2 precipitation. Incorporating the optimum concentration of Na-HMP into the mix water therefore transforms the properties of cement paste and mortar samples formed by reacting MgO and SiO2.  相似文献   

9.
用DTA、XRD及SEM分析了不同养护条件下硅灰改性前后压实水泥的组成和微观结构,并探讨了结构与耐久性的关系。结果表明:在常温水养护条件下,除Ca(OH)2外,硅灰改性前后压实水泥的组成无明显差异;压蒸条件下,随压蒸时间延长伴有产物的转化和晶化,掺入硅灰后,产物向低CaO/SiO2方向转化和晶化;材料结构中未水化水泥颗粒进一步水化以及产物的转化和晶化对材料的结构和性能产生不利影响,甚至会导致结构破坏  相似文献   

10.
This work aimed to develop novel cement systems for waste encapsulation that would form with a pH of around 10. The approach taken was to investigate the formation of brucite by hydration of a light burned periclase (MgO). Commercially available MgO powders often contain some CaO, and therefore silica fume was added to form C-S-H gel. Identification of the hydrated phases in MgO/silica fume samples showed that brucite formed in substantial quantities as expected. However, brucite reacted with the silica fume to produce a magnesium silicate hydrate (M-S-H) gel phase. After 28 days, the pH of systems rich in MgO tended towards the pH controlled by residual brucite (~ 10.5), whereas when all brucite reacts with silica fume a cement with an equilibrium pH just below 10 was achieved.  相似文献   

11.
The microstructural and microchemical development of heat-cured Portland cement mortars containing silica fume, metakaolin, blast-furnace slag, and fly ash were analysed using pore solution analysis, X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray analysis (EDX). Incorporation of these materials into the mixture modifies the composition of the C-S-H gel, the quantities of the hydration products, and the microstructure. Ettringite was formed during moist storage in all specimens, but was not accompanied by expansion where a sufficient amount of metakaolin, blast-furnace slag, or a suitable fly ash replaced a proportion of the Portland cement; replacement with silica fume was not as effective at eliminating expansion. The different behaviour of silica fume from the other supplementary cementing materials is believed to reflect a difference in the way ettringite is formed in the presence of Al2O3-bearing mineral admixtures.  相似文献   

12.
Influence of polymer on cement hydration in SBR-modified cement pastes   总被引:1,自引:0,他引:1  
The influence of styrene-butadiene rubber (SBR) latex on cement hydrates Ca(OH)2, ettringite, C4AH13 and C-S-H gel and the degree of cement hydration is studied by means of several measure methods. The results of DSC and XRD show that the Ca(OH)2 content in wet-cured SBR-modified cement pastes increases with polymer-cement ratio (P/C) and reaches a maximum when P/C is 5%, 10% and 10% for the pastes hydrated for 3 d, 7 d and 28 d, respectively. With wet cure, appropriate addition of SBR promotes the hydration of cement, while the effect of SBR on the content of Ca(OH)2 and the degree of cement hydration is not remarkable in mixed-cured SBR-modified cement pastes. XRD results illustrate that SBR accelerates the reaction of calcium aluminate with gypsum, and thus enhances the formation and stability of the ettringite and inhibits the formation of C4AH13. The structure of aluminum-oxide and silicon-oxide polyhedron is characterized by 27Al and 29Si solid state NMR spectrum method, which shows that tetrahedron and octahedron are the main forms of aluminum-oxide polyhedrons in SBR-modified cement pastes. There are only [SiO4]4− tetrahedron monomer and dimer in the modified pastes hydrated for 3 d, but there appears three-tetrahedron polymer in the modified pastes hydrated for 28 d. The effect of low SBR dosage on the structure of aluminum-oxide and silicon-oxide polyhedron is slight. However, the combination of Al3+ with [SiO4]4− is restrained when P/C is above 15%, and the structure of Al3+ is changed obviously. Meantime, the polymerization of the [SiO4]4− tetrahedron in C-S-H gel is controlled.  相似文献   

13.
Calcium hexaluminate (CA6) is an intrinsically densification-resistant material, therefore, its porous structures are key materials for applications as high-temperature thermal insulators. This article reports on the combination of calcined alumina and calcium aluminate cement (CAC) in castable aqueous suspensions for the in situ production of porous CA6. The CAC content (10–34 vol%) and the curing conditions ensure structural integrity prior to sintering and maximize the development of hydrated phases. Changes in physical properties, crystalline phases, and microstructure were investigated after isothermal treatments (120–1500 °C), and three sequential porogenic events were observed. The hydration of CAC preserved the water-derived pores (up to 120 °C), and the dehydroxylation of CAC hydrates (250–700 °C) generated inter-particles pores. Moreover, the in situ expansive formation of CA2 and CA6 (900–1500 °C) hindered densification and generated intra-particle pores. Such events differed from those observed with other CaO sources, and resulted in significantly higher pores content and lower thermal conductivity.  相似文献   

14.
This study reveals that the nanosilica hydrosols with higher specific surface areas had faster pozzolanic reactivity, especially at early ages; moreover, the results are indicative of the accelerating influence of nanosilicas and silica fume on the hydration of cement. Faster initial and final setting times observed for cement pastes containing nanosilicas are consequence of these mechanisms. However, less hydration degree of cement compared to the plain paste was observed at age of 7 days and after. This can be attributed to the entrapment of some of mix water in the aggregates of nanosilicas formed in cement paste environment, making less water available for the progress of cement hydration. The same mechanism is believed to be responsible for the reduction of flowability of cement pastes.  相似文献   

15.
This paper presents results of an experimental program conducted to investigate the capacity of hydration products of different cementing materials to retain “bound” alkalis when the alkalinity of the surrounding solution drops. The study covered paste samples containing high-alkali Portland cement and various levels of silica fume and/or fly ash. The results showed that the ability of the hydration products of cement-fly ash systems to bind alkalis is a function of the CaO content of the fly ash, the binding increasing as the calcium content decreases. High-alkali fly ashes (Na2Oe > 5.0% and CaO in the range of 15% to 20%) showed considerable amounts of alkali contributed to the test solutions. Silica fume does not have a high capacity to retain alkalis in its hydration products; however, ternary blends containing silica fume and fly ash have excellent capacity to bind and retain alkalis.  相似文献   

16.
Hydration of portland cement pastes containing three types of mineral additive; fly ash, ground-granulated slag, and silica fume was investigated using differential thermal analysis, thermogravimetric analysis (DTA/TGA) and isothermal calorimetry. It was shown that the chemically bound water obtained using DTA/TGA was proportional to heat of hydration and could be used as a measure of hydration. The weight loss due to Ca(OH)2 decomposition of hydration products by DTA/TGA could be used to quantify the pozzolan reaction. A new method based on the composition of a hydrating cement was proposed and used to determine the degree of hydration of blended cements and the degree of pozzolan reaction. The results obtained suggested that the reactions of blended cements were slower than portland cement, and that silica fume reacted earlier than fly ash and slag.  相似文献   

17.
Phase studies of calcium silicate hydrates formed at elevated temperature and pressure have been well documented. At 180 °C, the initially formed amorphous calcium silicate gel [C-S-H] transforms into well-defined crystalline phases, the stability of which is primarily dependent on the C/S ratio in the CaO-SiO2-H2O system and the hydrothermal conditions. Hillebrandite [C2SH], α-dicalcium silicate hydrate [α-C2SH] and β-tricalcium silicate [β-C6S2H3] are predominantly the stable phases in the lime-rich part of the CaO-SiO2-H2O system and are typically associated with high permeability and compressive strength retrogression. Gyrolite [C2S3H~2], tobermorite [C5S6H5], truscottite [C7S12H~3] and xonotlite [C6S6H] have all been reported to coexist stably in aqueous solution with silica in the silica-rich part of the CaO-SiO2-H2O system.The addition of excess silica to the CaO-SiO2-H2O system is usually in the form of silicon dioxide [SiO2], either as microsilica or quartz flour, which, in theory, should not affect the equilibrium chemistry. This has not been found to be the case, and metastable phases formed in the early stages of reaction modify the long-term stability and phase equilibrium. Pozzolanic materials that are predominantly alumino-silicates have also been investigated as a source of excess silica. Partial replacement of aluminum for silicon occurred, but had no apparent influence on the stability of the calcium silicate hydrates formed.  相似文献   

18.
A quasi‐amorphous low‐calcium‐silicate hydraulic binder, with an overall CaO/SiO2 (C/S) molar ratio of 1.1, was produced. This cementitious material was then hydrated with aqueous solutions containing 3 wt% alkalis (either NaOH, Na2CO3 or Na2SiO3). The evolution of the hydration processes of the samples were monitored by compressive strength testing, XRD, FTIR, 29Si and 27Al MAS NMR, isothermal calorimetry and TGA. It was found that the nearly exclusive hydration product formed was a C‐S‐H phase with a semi‐crystalline structure. More importantly, the paste prepared with the Na2SiO3 solution developed compressive strength values similar to those of ordinary portland cements (OPC) with faster early age kinetics. In addition, the isothermal calorimetry results indicated that these new hydraulic binders present much lower heat of hydration values compared with a traditional OPC. The results presented here open the possibility of producing cement with a compressive strength comparable to that of OPC but with lower CO2 emissions during the production process and with lower hydration heat related problems during the production of concrete structures.  相似文献   

19.
The hydration of a tricalcium silicate paste at ambient temperature and at 200 °C under high pressure (up to 1000 bar) has been studied. Two high pressure cells have been used, one allows in-situ electrical conductivity measurements during hydration under high pressure. The hydration products were characterized by thermal analysis, X-ray diffraction and 29Si NMR measurements. The pressure has a large kinetic effect on the hydration of a C3S paste at room temperature. The pressure was seen to affect drastically the hydration of a C3S paste at 200 °C and this study evidences the competition between the different high temperature phases during the hydration.  相似文献   

20.
In this work the impact of Al2O3 amount on the synthesis (200?°C; 4–8?h) of calcium aluminium silicate hydrates (CSAH) samples and their influence on the early stage hydration of calcium aluminate cement (CAC) was examined. It was found that the amount of Al2O3 plays an important role in the formation of calcium aluminate hydrates (CAH) because in the mixtures with 2.7% Al2O3 only calcium silicate hydrates (CSH) intercalated with Al3+ ions were formed. While in the mixtures with a higher amount of Al2O3 (5.3–15.4%), calcium aluminate hydrate – C3AH6, is formed under all experimental conditions. It is worth noting that the largest quantity of mentioned compound was obtained after 4?h of hydrothermal treatment, in the mixtures with 15.4% of Al2O3. It was proved that synthesized C3AH6 remain stable up to 300?°C and at higher temperature (945?°C) recrystallized to mayenite (Ca12Al14O33), which reacted with the rest part of CaO and amorphous structure compound, resulting in the formation of gehlenite (Ca2Al2SiO7). Moreover, the synthesized C3AH6 addition induced the early stage of CAC hydration. Besides, in the samples with an addition, the induction period was effectively shortened: in a case of pure CAC (G70) paste, hydration takes about 6–6.5?h, while with addition – only 2–2.5?h. The synthesized and calcinated compounds was characterized by using XRD and STA analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号