首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of cement particle-size distribution on autogenous strains and stresses in cement pastes of identical water-to-cement ratios is examined for cement powders of four different finenesses. Experimental measurements include chemical shrinkage, to quantify degree of hydration; internal relative humidity development; autogenous deformation; and eigenstress development, using a novel embedded spherical stress sensor. Because the latter three measurements are conducted under sealed conditions, whereas chemical-shrinkage measurements are made under "saturated" conditions, the National Institute of Standards and Technology cement hydration and microstructure development model is used to separate the effects of differences in hydration rates (kinetics) from those caused by the different initial spatial arrangement of the cement particles. The initial arrangement of the cement particles controls the initial pore-size distribution of the cement paste, which, in turn, regulates the magnitude of the induced autogenous shrinkage stresses produced by the water/air menisci in the air-filled pores formed throughout the hydration process. The experimental results indicate that a small autogenous expansion (probably the result of ettringite formation), as opposed to a shrinkage, may be produced and early age cracking possibly avoided through the use of coarser cements.  相似文献   

2.
张涛  朱成 《硅酸盐通报》2022,41(3):903-912
为研究硅灰及粉煤灰对不同养护龄期的水泥浆体强度及收缩性能的影响,以水胶比为0.29的水泥浆体为基体,设计制备了五种硅灰及粉煤灰掺量的复合水泥浆体,借助量热仪和压汞仪测试表征了不同复合水泥浆体的水化放热特性以及孔结构组成,分析了水化放热量、孔隙率等参数随硅灰和粉煤灰掺量增加的变化规律,建立了复合浆体抗压强度与孔结构以及水化特性与收缩应变之间的量化关系。结果表明,掺入粉煤灰会大幅降低水泥净浆早期抗压强度,但对减小自收缩应变和干缩应变极为有利。掺入硅灰能明显提高净浆3 d抗压强度,但当硅灰掺量超过10%(质量分数)后,净浆3 d自收缩应变及28 d干缩应变增加极为明显。掺入硅灰会使水泥水化诱导期开始和结束的时间提前,还会增加水化反应级数和各阶段的反应速率常数值,导致水泥-硅灰复合浆体的水化放热总量和放热速率相较于水泥-粉煤灰体系大幅增加。粉煤灰和硅灰的掺入均能有效细化水泥浆体内部孔结构,提高凝胶孔比例,大幅降低大孔比例。复合浆体的72 h水化放热总量和3 d自收缩应变呈现正相关关系,而孔隙率和抗压强度呈现明显的负相关关系。  相似文献   

3.
党玉栋  钱觉时  曲艳召  郭清春  贾兴文  王智 《硅酸盐学报》2012,40(5):657-658,659,660,661,662,663
研究了饱和轻骨料内养护对不同细度水泥配制的砂浆自收缩、强度、水化程度、显微硬度以及界面过渡区形貌等的影响。结果发现:内养护可显著降低不同细度水泥配制的砂浆的早期自收缩,但减缩效果随着水泥比表面积增大而降低;内养护的砂浆后期自收缩仍持续增加,水泥越粗,自收缩后期增长越大;内养护能够显著促进水泥早期水化,这种促进作用在细水泥中最显著。在相同条件下,轻骨料的引入对砂浆强度的影响作用与水泥细度有关;显微硬度以及界面过渡区微观形貌结果显示,轻骨料内养护能显著改善粗水泥体系微观结构,对细水泥体系微观结构的改善则无显著贡献。  相似文献   

4.
Effect of fly ash on autogenous shrinkage   总被引:3,自引:0,他引:3  
The correlation between autogenous shrinkage and degree of hydration of fly ash was determined with the selective dissolution method. Then, the relationship between the degree of hydration of fly ash and autogenous shrinkage was examined. The results showed that the degree of hydration of fly ash increased as its Blaine surface area increased. The degree of hydration of fly ash increased with time, and autogenous shrinkage increased corresponding to the increase in the degree of hydration of fly ash. Moreover, it was found that the total quantity of Al2O3 in cement-fly ash samples affected autogenous shrinkage at early ages, but the long-term influence was very small.  相似文献   

5.
本文研究了不同拌和水以及海水拌和时粉煤灰和硅灰掺量对硫铝酸盐水泥(SAC)砂浆力学性能和表观孔隙率以及净浆凝结时间、化学收缩、孔溶液pH值和氯离子结合能力等的影响,并通过XRD、SEM和EDS分析水泥水化产物和微观结构。结果表明,海水能加快SAC早期水化并提高其早期强度,但后期强度和淡水拌和时无明显差别。粉煤灰和硅灰均会延长SAC凝结时间,对早期抗压强度不利,而掺加质量分数为5.0%和7.5%的硅灰能提高SAC砂浆28 d抗压强度。硅灰掺量增加时会提高用水量和表观孔隙率,降低流动性,使水泥化学收缩增大,降低净浆pH值且减少氯离子结合量;粉煤灰能够提高砂浆流动性,减少水泥化学收缩,但掺量越大对SAC砂浆抗压强度和抗折强度越不利,掺质量分数为10%的粉煤灰可小幅提高氯离子结合量且减小表观孔隙率。  相似文献   

6.
Internal curing by superabsorbent polymer (SAP) is an effective method to mitigate the autogenous shrinkage of cement-based materials with low water-to-cement ratio (w/c). In this study, the water absorption/desorption kinetics of SAP were studied quantitatively in blended cement pastes with ultra-low w/c. An absorption process at a rate of 0 to 6 g/(g h) was calculated at early ages. After that, SAPs showed mainly two distinct water desorption behaviors with a rate of 0 to 1.1 g/(g h), which was mainly governed by the osmotic pressure and capillary pressure triggered by the drop of internal relative humidity (IRH). The size and amount of SAP played a predominant role in controlling its absorption and desorption kinetics in the cement paste. Compared with ordinary Portland cement, a different desorption process with a higher release rate was noticed in binary and ternary cement pastes, primarily due to the changes in osmotic pressure resulting from the acceleration of cement hydration by silica fume at early ages. Overall, the mitigation of autogenous shrinkage is found to be highly dependent on SAP's absorption and desorption kinetics.  相似文献   

7.
This paper examines the early hydration of alkali-slag cements activated with water glass with different n moduli and sodium metasilicate (Na2SiO3·5H2O) in solution at 25 °C. The early hydration of alkali-activated blast furnace slag cements has been studied using isothermal conduction calorimetry. The cumulative heat of hydration increases by increasing the n modulus as well as the dosage of water glass, but is still lower than that of Portland cement. The compressive strength of normal-cured water glass slag cements is higher than Portland cement mortars. Drying shrinkage of alkali-slag cements is considerably higher than that of Portland cement. Consequently, industrial use of alkali-slag cement needs better understanding of the hardening mechanism and requires further research based on presented observations and results.  相似文献   

8.
为了探索镁渣与粉煤灰复掺对混凝土自生收缩的作用规律,设计正交试验方案研究了混凝土的自生收缩特性,微观分析掺合料的形貌与作用机理.结果表明:镁渣和粉煤灰对混凝土的自生收缩具有显著的抑制效应,镁渣与粉煤灰的掺量由(10%,15%)增加到(40%,30%),混凝土180 d的自生收缩变形减少约44.0%;混凝土自生收缩在镁渣掺量为30%~40%区间上的极差较镁渣掺量为10%~20%区间上的极差增大3.5倍,混凝土自生收缩变形的敏感性在镁渣掺量高时相对较大;混凝土的自生收缩变形主要发生在早期,28 d就完成了测定龄期内总自生收缩变形的65.0%~80.0%,早期是混凝土收缩变形控制的重要阶段;自生收缩的模型预测值与实测值间的偏差小,可用于复掺镁渣粉煤灰混凝土自生收缩的分析与预测.  相似文献   

9.
张世华 《硅酸盐通报》2018,37(1):210-214
采用石灰石粉对低品位粉煤灰进行煅烧改性,利用X射线衍射、扫描电镜和能谱分析等方法对改性粉煤灰的矿物组成和化学组成进行表征.同时测定了掺改性粉煤灰的水泥浆体的抗压强度和自收缩,并采用背散射扫描电镜和压汞测孔仪研究了掺改性粉煤灰水泥浆体的微观结构.结果表明,粉煤灰经煅烧改性生成了水硬性矿物β-C2S,水化可生成CSH凝胶,改善了等外粉煤灰颗粒与水泥基体的界面粘接,降低了复合水泥浆体的孔隙率和自收缩,提高了复合水泥浆体的强度.  相似文献   

10.
Activated slag cement (ASC) shows significantly higher shrinkage than ordinary Portland cement agglomerates. Cracking generated by shrinkage is one of the most critical drawbacks for broader applications of this promising alternative binder. This article investigates the relationship between ASC hydration, unrestrained drying and autogenous shrinkage of mortar specimens. The chemical and microstructure evolution due to hydration were determined on pastes by thermogravimetric analysis, conduction calorimetry and mercury porosimetry. Samples were prepared with ground blast furnace slag (BFS) activated with sodium silicate (silica modulus of 1.7) with 2.5, 3.5 and 4.5% of Na2O, by slag mass. The amount of activator is the primary influence on drying and autogenous shrinkage, and early hydration makes a considerable contribution to the total result, which increases with the amount of silica. Drying shrinkage occurred in two stages, the first caused by extensive water loss when the samples were exposed to the environment, and the second was associated with the hydration process and less water loss. Due to the refinement of ASC porous system, autogenous shrinkage is responsible for a significant amount of the total shrinkage.  相似文献   

11.
矿物外加剂及测试方法对硬化水泥浆体自收缩值的影响   总被引:1,自引:0,他引:1  
分别采用两种不同试验方法对比研究了单掺粉煤灰、硅灰和矿渣微粉这三种常用的矿物外加剂(即水泥混合材)对水泥浆体早期自收缩的影响。研究结果表明,单掺粉煤灰、硅灰和矿渣微粉后,硬化水泥浆体的自收缩值分别随其掺量的增加而减小、增大和增大。本文分析研究了这三种常用的矿物外加剂对硬化水泥浆体自收缩产生影响的原因,并对比分析了本试验采用的两种试验方法,发现波纹管法更能准确地测量水泥浆体的早期自收缩,参照现行行业标准JC/T313-1982测试无法正确地反映硬化水泥浆体更早期的收缩现象。  相似文献   

12.
通过开展化学收缩、自收缩与干燥收缩试验,研究了超细矿渣粉和偏高岭土对硫铝酸盐水泥早期收缩性能的影响。结果表明,掺入超细矿渣粉与偏高岭土会增大水泥浆体的内部相对湿度,能有效抑制水泥浆体的化学收缩、自收缩与干燥收缩,且掺量越大,抑制效果越明显,根据水泥浆体的内部相对湿度能够大致判断其自收缩的变化规律。掺入超细矿渣粉与偏高岭土会加快硫铝酸盐水泥的早期水化,使化学收缩变化速率达到峰值的时间提前。当超细矿渣粉的掺量为20%(质量分数,下同)或偏高岭土的掺量为10%、20%时,与空白组相比水泥浆体的7 d自收缩分别减小了42.21%、35.89%和63.73%,7 d干燥收缩分别减小了24.89%、16.42%和30.87%。在相同掺量条件下,掺入偏高岭土的水泥浆体化学收缩、自收缩与干燥收缩显著小于掺入超细矿渣粉的水泥浆体。自收缩与线性化学收缩的比值随龄期的增长而减小,掺入超细矿渣粉与偏高岭土后,自收缩与线性化学收缩的比值进一步减小。  相似文献   

13.
To limit self-desiccation and autogenous shrinkage that may lead to early-age cracking of ultra-high performance concrete (UHPC), internal curing by means of superabsorbent polymers (SAP) may be employed. Cement pastes and UHPC with water-to-cement ratio below 0.25, with or without SAP, were studied. The absorption capacity of a solution-polymerized SAP was first determined on hardened cement pastes by SEM image analysis. It was observed that the SAP cavities become partially filled with portlandite during cement hydration. Isothermal calorimetry showed that water entrainment with SAP delays the main hydration peak, while after a couple of days it increases the degree of hydration in a manner similar to increasing the water-to-cement ratio. Internal curing by SAP is effective in reducing the internal relative humidity decrease and the autogenous shrinkage. Although the mechanical properties are affected by SAP addition, it is possible to reach compressive strengths of almost 150 MPa at 28 days.  相似文献   

14.
According to physical analyses, the driving force of autogenous shrinkage of concrete is the change in the capillary pressure induced by self-desiccation in its cement matrix. Self-desiccation is caused by the balance between the absolute volume reduction (chemical shrinkage) and the building up of the capillary network. The aim of this study was to quantify the influence of the cement characteristics on the chain of mechanisms leading from hydration to autogenous deformations. Four parameters were selected: (i) for clinker, the amount of C3A and free lime and the SO3/K2O ratio; (ii) for cement, the fineness. To master the experimental area, 16 cements were prepared at the laboratory from pure raw materials. An important number of characterizing techniques were used in the experimental study. Their choice was based on the important parameters drawn from the physical analysis: setting time, suspension-solid transition, hydration kinetics through isothermal calorimetry and nonevaporable water, chemical shrinkage, evolution of relative humidity, capillary porosity and autogenous shrinkage. Using different techniques allowed to determine the precise mechanism of action of each parameter. Results showed that these mechanisms are generally different, even if their macroscopic consequences may be identical. This point will probably be useful for modeling and determining the industrial keys reducing the autogenous shrinkage. The physical mechanisms involved in autogenous deformations were further understood. In particular, this study shows that initial autogenous shrinkage should be considered as a balance between the self-desiccation and an initial swelling phase. The influence of the four parameters considered on this last phenomenon were also characterized.  相似文献   

15.
以不同比例石粉和粉煤灰复掺50%取代水泥配置混凝土进行试验.研究了石粉和粉煤灰复掺比例对混凝土抗压强度和收缩率的影响,利用XRD和TEM对复掺混凝土的水化产物进行了分析.结果表明:由于石粉和粉煤灰对混凝土抗压强度的影响机理不同,复掺比例在不同龄期对混凝土抗压强度的影响规律也不同;复掺混凝土的收缩率随复掺料中石粉含量的增加而变大.  相似文献   

16.
研究了海水环境下掺入硅灰、粉煤灰、矿渣对硫铝酸盐水泥抗压强度、化学收缩和水化产物的影响规律.结果表明:当硅灰的掺量为2.5%时,水泥浆体的抗压强度比空白组高.矿渣掺量为10%的水泥浆体28 d抗压强度明显超过掺入硅灰和粉煤灰时的强度,60 d强度高于空白组.掺入2.5%硅灰后,水泥浆体的化学收缩增大;在水化早期,粉煤灰和矿渣的火山灰活性很低,导致水泥浆体的化学收缩降低.掺入10%硅灰加快了硫铝酸盐水泥3 d水化反应,钙矾石生成量增多,水泥浆体早期强度比掺其它掺合料有所提高,但体积过快膨胀会破坏其内部结构,对水泥浆体的强度发展不利.  相似文献   

17.
Powers’ model is a simple approach for estimating the relative volumes of hydration products, porosity, and chemical shrinkage present in portland cement paste as a function of its starting water‐to‐cement ratio (w/c) and current degree of hydration. It forms an important link between cement composition, microstructure, and performance, necessary for modeling cement‐based systems. Previous researchers have adapted Powers’ model for inert fillers to illustrate their effects on the hydration, porosity, and chemical shrinkage of blended cements; however, it is well‐documented that limestone is not, in fact, an inert filler, but rather participates in cement hydration through both chemical and physical processes. This research experimentally investigates the applicability of Powers’ model to modern portland cements containing up to 15% by mass finely divided limestone. The results demonstrate that the modified Powers’ model is insufficient for predicting the influence of finely divided limestone additions on the chemical shrinkage of both ordinary portland cement pastes and portland limestone cement pastes. Possible explanations for the discrepancy are discussed and a plausible source is proposed.  相似文献   

18.
杭美艳  路兰  高生 《硅酸盐通报》2018,37(3):1072-1076
以防腐阻锈成分、粉煤灰、矿渣粉等量取代部分水泥,研究单掺防腐阻锈成分、双掺粉煤灰和矿渣粉以及复掺三者时对水泥胶砂抗蚀系数、电极电位的影响,并利用扫描电子显微镜(SEM)对不同复合掺合料水化产物和表面特征进行分析.试验结果表明:单掺FZJ的水泥胶砂,当掺量为6%时,其初始抗蚀系数比未掺的基准水泥胶砂高20%;双掺粉煤灰与矿渣粉的水泥胶砂,当两者掺量为65%时,100次循环后抗蚀系数远高于基准水泥胶砂,抗蚀效果显著;三者复掺最佳替代水泥量为71%时,56 d电极电位曲线趋向钝化,水泥胶砂的抗氯盐锈蚀效果最显著.电镜分析表明:防腐阻锈成分对粉煤灰、矿渣粉实现了碱改性,增加其二次水化活性,使三者复合掺合料的砂浆试块抗侵蚀性能随养护龄期的增长更加显著,为在氯盐、硫酸盐环境下矿物掺合料砂浆或混凝土耐久性研究提供应用技术.  相似文献   

19.
高掺量混合材复合水泥的水化性能   总被引:9,自引:0,他引:9  
李北星  胡晓曼  陈娟  何真 《硅酸盐学报》2004,32(10):1304-1309
通过水化微量热、化学结合水测定和X射线衍射、热重-差热分析、扫描电镜等测试方法研究了3种高掺量矿渣、粉煤灰、石灰石复合水泥的水化性能,并与硅酸盐水泥的水化进行了对比。结果表明:高掺混合材复合水泥的水化放热特征与硅酸盐水泥有明显不同,早期水化反应速度低于硅酸盐水泥,但后期由于矿渣、粉煤灰的二次水化反应使其水化速度增长较快。主要的水化产物亦为水化硅酸钙凝胶、钙钒石和Ca(OH)2晶体,但Ca(OH)2含量明显低于硅酸盐水泥浆体中的Ca(OH)2含量。  相似文献   

20.
Early age hydration of barium-doped β-Ca2SiO4 cement, produced from rice hull ash (RHA), is examined by transmission soft X-ray microscopy. Use of low-energy cements produced from by-product materials, such as the cement considered here, may be economically and environmentally advantageous. However, the hydration kinetics and morphology and composition of the products of RHA-based β-Ca2SiO4 cements have not been investigated. Observation of the early age cement hydration shows evidence of cement dissolution and hydration product formation, including the formation of Hadley grains. The rates of the reaction and amount product formed appear to be related to the hydrothermal processing temperature and the chemical composition of the cement. That is, more rapid hydration is observed for barium-doped RHA cements produced at higher temperatures and for cements produced with higher barium contents, within the ranges examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号