首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
A wide variety of carbon materials (ordered mesoporous carbons, carbon blacks, activated carbon, carbon nanotubes, coke and graphite) have been investigated as catalysts for hydrogen production by methane decomposition, with the aims of identifying the carbon properties which control in a greater extension the catalytic activity and determine the nature of the active sites involved in the reaction.The catalytic activity of the different carbon materials was determined and compared using temperature-programmed experiments in a thermobalance. The initial activity was followed through the threshold temperature, defined as the temperature at which hydrogen production starts being detected, whereas the average reaction rate was also calculated and compared. The lowest threshold temperature was observed with ordered mesoporous carbons (CMK materials), followed by activated carbon and carbon blacks. On the other hand, at long reaction times activated carbon was quickly deactivated yielding a relatively low average reaction rate. The deactivation process seems to be greatly linked to the presence of micropores while the long-term activity is retained in those materials with ordered mesoporosity (CMKs) or formed by nanoparticles (carbon blacks), which make them more resistant to deactivation by the formation of carbonaceous deposits.Whereas no clear dependence is observed between the threshold temperature and the surface area neither with the presence of polar groups in the carbon catalysts, characterization of these materials by XPS shows that a direct relationship exists with the amount of defects present on the graphene layers. This fact strongly supports that these defects are the main active sites for methane decomposition over carbon catalysts.  相似文献   

2.
Carbon materials particularly in the form of sparkling diamonds have held mankind spellbound for centuries, and in its other forms, like coal and coke continue to serve mankind as a fuel material, like carbon black, carbon fibers, carbon nanofibers and carbon nanotubes meet requirements of reinforcing filler in several applications. All these various forms of carbon are possible because of the element's unique hybridization ability. Graphene (a single two-dimensional layer of carbon atoms bonded together in the hexagonal graphite lattice), the basic building block of graphite, is at the epicenter of present-day materials research because of its high values of Young's modulus, fracture strength, thermal conductivity, specific surface area and fascinating transport phenomena leading to its use in multifarious applications like energy storage materials, liquid crystal devices, mechanical resonators and polymer composites. In this review, we focus on graphite and describe its various modifications for use as modified fillers in polymer matrices for creating polymer-carbon nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号