首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of different temperature/time/pressure high hydrostatic pressure (HHP) treatment on quality and shelf life of sea bream were studied. Different high-pressure treatments (at 3, 7, 15 and 25 °C, 5–10 min and 220, 250 and 330 MPa) were tested to establish the best processing conditions for quality of sea bream. The effect of the process on the quality of the sample was examined by colour, trimethylamine nitrogen and thiobarbituric acid number analysis. Based on the results of the parameter, the best combinations of HHP treatments were determined as 3 °C/5 min/250 MPa–15 °C/5 min/250 MPa for sea bream. The effects of this combination treatment on sensory, chemical and microbiological properties of sea bream stored at 4 °C were studied. The results obtained from this study showed that the shelf life of untreated and HHP treated stored in refrigerator, as determined by overall acceptability of sensory and microbiological data, is 15 days for untreated sea bream and 18 days for treated sea bream at 3 °C/5 min/250 MPa and at 15 °C/5 min/250 MPa treated sea bream.  相似文献   

2.
The effects of high pressure (HP) treatment (pressure: 220–250–330 MPA; holding time: 5 and 10 min; temperature: 3, 7, 15 and 25°C) on physicochemical characteristics (colour, thiobarbituric acid, trimethylamine nitrogen values) of fresh sea bass fillets were investigated. HP-treated sea bass fillets had higher lightness (Hunter L*) values than untreated sea bass fillets; the magnitude of changes increased with treatment pressure. HP-induced changes in colour generally imparted a cooked sample. The TBA value of HP treated sea bass samples (except 220–330 MPa, 3°C for 5 min) were found to be insignificant (P > 0.05) or significantly (P < 0.05) lower than the untreated samples. TMA-N content of HP treated at 220–250–330 MPa, 3–7–25°C for 10 min sea bass samples were found to insignificant according to the untreated samples. The results obtained from this study showed that the quality of high pressure treated sea bass is best preserved at 220 MPa, 25°C for 5 min.  相似文献   

3.
The effect of different temperature/time/pressure high hydrostatic pressure (HP) treatment on the quality and shelf life of red mullet were studied. Different high pressure treatments (at 3, 7, 15 and 25 °C, 5 to 10 min and 220, 250 and 330 MPa) were tested to establish the best processing conditions for the quality of red mullet. The effect of the process on the quality of the sample was examined by colour, Trimethylamine nitrogen (TMA-N) and Thiobarbituric acid number (TBA) analysis. Based on the results of the parameters, the best combinations of HP treatments were determined as 220 MPa/5 min/25 °C and 330 MPa/5 min/3 °C for red mullet. The effects of this combination treatment on sensory, chemical and microbiological properties of red mullet stored at 4 °C were studied. The results obtained from this study showed that the shelf life of untreated and HP treated stored at 4 °C, as determined by overall acceptability of sensory and microbiological data, are 12 days for untreated red mullet and 14 days for treated red mullet at 220 MPa for 5 min at 25 °C and 15 days for treated red mullet at 330 MPa for 5 min at 3 °C.Industrial relevanceFresh fish have short shelf life. HP treatment has shown to be an effective method to control pathogen and spoilage microorganisms in fish and fish products. However, high pressure treatment can promote colour and oxidation changes that could modify their sensory characteristics. The main objective of the first part of this study was to detect the best combination among the applied pressure (220, 250 and 330 MPa), temperature (3, 7, 15 and 25 °C) and time (5 and 10 min) combinations. The treatment ranges were chosen according to the unchanging colour, lower TBA value and TMA stability by HP and considering the economical aspects of HP processing. In the second part of the study, HP was applied on the selected samples and a shelf-life study was performed by measuring the changes in the quality parameters, of the samples throughout their storage. The storage conditions were set so as to achieve refrigeration handling (4 °C). Shelf-life estimation was performed according to the data obtained. HP (at 220 MPa for 5 min at 25 °C and at 330 MPa for 5 min at 3 °C) treatment is the most effective treatment for shelf-life extension as compared to non-treated red mullet.  相似文献   

4.
The effects of high pressure (HP) treatment (pressure: 220–250–330 MPA; holding time: 5 and 10 min; temperature: 3, 7, 15 and 25°C) on physicochemical characteristics (colour, thiobarbituric acid, trimethylamine nitrogen values) of fresh sea bass fillets were investigated. HP-treated sea bass fillets had higher lightness (Hunter L*) values than untreated sea bass fillets; the magnitude of changes increased with treatment pressure. HP-induced changes in colour generally imparted a cooked sample. The TBA value of HP treated sea bass samples (except 220–330 MPa, 3°C for 5 min) were found to be insignificant (P > 0.05) or significantly (P < 0.05) lower than the untreated samples. TMA-N content of HP treated at 220–250–330 MPa, 3–7–25°C for 10 min sea bass samples were found to insignificant according to the untreated samples. The results obtained from this study showed that the quality of high pressure treated sea bass is best preserved at 220 MPa, 25°C for 5 min.  相似文献   

5.
The application of high hydrostatic pressure (HHP) (250 MPa, 35 °C for 15 min) and thermal treatment (80 °C for 1 min) reduced the microbial load of carrot and tomato juices to undetectable levels. Different combinations of HHP did not cause a significant change in the ascorbic acid content of either juice (P > 0.05). Both heat treatments (60 °C for 5–15 min and 80 °C for 1 min) resulted in a significant loss (P < 0.05) in the free‐radical scavenging activity as compared to untreated samples. HHP‐treated juices showed a small loss of antioxidants (below 10%) during storage. The ascorbic acid content of pressurized tomato and carrot juices remained over 70 and 45% after 30 days of storage, respectively. However, heat treatment caused a rapid decrease to 16–20%. Colour changes were minor (ΔE = 10) for pressurised juices but for heat‐pasteurised samples it was more intense and higher as a result of insufficient antioxidant activity. HHP treatment (250 MPa, 35 °C for 15 min) led to a better product with regard to anti‐radical scavenging capacity, ascorbic acid content and sensory properties (colour, pH) of the tomato and carrot juices compared to conventional pasteurisation. Therefore, HHP can be recommended not only for industrial production but also for safe storage of fresh juices, such as tomato and carrot, even at elevated storage temperatures (25 °C). Copyright © 2007 Society of Chemical Industry  相似文献   

6.
The change in the quality attributes (physical, microbial, and chemical) of oysters (Crassostrea virginica) after high hydrostatic pressure (HHP) treatment at 300 MPa at room temperature (RT, 25 °C) 300, 450, and 500 MPa at 0 °C for 2 min and control oysters without treatment were evaluated over 3 wk. The texture and tissue yield percentages of oysters HHP treated at 300 MPa, RT increased significantly (P < 0.05) compared to control. Aerobic and psychrotrophic bacteria in control oysters reached the spoilage point of 7 log CFU/g after 15 d. Coliform counts (log MPN/g) were low during storage with total and fecal coliforms less than 3.5 and 1.0. High pressure treated oysters at 500 MPa at 0 °C were significantly higher (P < 0.05) than oysters HHP treated at 300 MPa at 0 °C in lipid oxidation values. The highest pressure (500 MPa) treatment in this study, significantly (P < 0.05) decreased unsaturated fatty acid percentage compared to control. The glycogen content of control oysters at 3 wk was significantly higher (P < 0.05) when compared to HHP treated oysters [300 MPa, (RT); 450 MPa (0 °C); and 500 MPa (0 °C)]. HHP treatments of oysters were not significantly different in pH, percent salt extractable protein (SEP), and total lipid values compared to control. Based on our results, HHP prolongs the physical, microbial, and chemical quality of oysters.  相似文献   

7.
Gutting was applied to fresh horse mackerel (Trachurus trachurus) to study its effect on rancidity development during a prolonged frozen storage (up to 12 months at −20°C). To do so, chemical (free fatty acids, FFA; peroxide value, PV; thiobarbituric acid index, TBA-i; fluorescence ratio, FR) and sensory (odour and taste) analyses were carried out. The results showed that the gutting of horse mackerel led to a higher degree of oxidation in the frozen product, according to the chemical (PV, TBA-i and FR) and sensory (odour and taste) analyses. However, a lower extent of lipid hydrolysis (FFA formation) was detected at the end of the storage (twelfth month) as a result of gutting. It is concluded that the gutting of a medium-fat fish species such as horse mackerel is not recommended as previous treatment to frozen storage.  相似文献   

8.
The efficiency of high hydrostatic pressure (HHP) with the combination of mild heat treatment on peroxidase (POD) and lipoxygenase (LOX) inactivation in carrots, green beans, and green peas was investigated. In the first part of the study, the samples were pressurized under 250–450 MPa at 20–50 °C for 15–60 min. In the second part, two steps treatments were performed as water blanching at 40–70 °C for 15 and 30 min after pressurization at 250 MPa and 20 °C for 15–60 min. Carrot POD was decreased to 16% residual activity within the first 30 min at a treatment condition of 350 MPa and 20 °C and then it decreased to 9% at 60 min. When the carrots were water blanched at 50 °C for 30 min after HHP treatment of 250 MPa at 20 °C for 15 min, 13% residual POD activity was obtained. For green beans, the most effective results were obtained by two steps treatment and approximately 25% residual POD activity was obtained by water blanching at 50 °C for 15 min after pressurization at 250 MPa and 20 °C for 60 min. An effective inactivation of POD in green peas was not obtained. For carrots, LOX activity could not be measured due to very low LOX activity or the presence of strong antioxidants such as carotenoids. After pressurization at 250 MPa and 20 °C for 15 or 30 min, water blanching at 60 °C for 30 min provided 2–3% residual LOX activity in green beans. The treatment of 250 MPa for 30 min and then water blanching at 50 °C for 30 min provided 70% LOX inactivation in green peas.  相似文献   

9.
This study investigated the isolated and combined effect of UV-C (0.310 J/cm2) and high hydrostatic pressure (HHP; 300 MPa for 5 min at 25 °C) on the quality parameters of cooked fish batter with reduced salt content by 25% and 50%. The treatments did not affect sodium chloride concentration, redness, yellowness, cohesiveness, springiness, and resilience (p > 0.05). CON (100% sodium chloride - NaCl), UV25%, and HHP25% had similar cooking loss (CL), lightness, hardness, chewiness, and salty taste (p > 0.05). UV + HHP25% showed higher CL and lower salty taste compared to CON, UV25%, and HHP25% (p < 0.05). UV50% and HHP50% had higher CL, lightness, hardness and chewiness, and lower salty taste than CON, UV25%, and HHP25% (p < 0.05). UV + HHP50% showed the highest CL, hardness and chewiness, while the lowest salty taste and higher lightness than CON (p < 0.05). Therefore, UV-C at 0.310 J/cm2 or HHP at 300 MPa for 5 min is a potential alternative to developing ready-to-eat fish products reduced by 25% NaCl.  相似文献   

10.
The quality characteristics and composition of sesame oils prepared at different roasting temperatures (160–250°C) from sesame seeds using a domestic electric oven were evaluated as compared to an unroasted oil sample: only minor increases (P<0·05) in characteristics, such as peroxide value, carbonyl value, anisidine value and thiobarbituric acid reactive substances, of sesame oils occurred in relation to increasing roasting temperature and time between 160 and 200°C, but colour units of oils increased markedly over a 220°C roasting temperature. Significant decreases (P<0·05) were observed in the amounts of triacylglycerols and phospholipids in the oils prepared using a 250°C roasting temperature. The amounts of γ-tocopherol and sesamin still remained over 80 and 90%, respectively, of the original levels after roasting at 250°C. In the oil prepared using a 250°C roasting temperature, sesamol was detected at 3370 mg per kg oil, but sesamolin was almost depleted after 25 min of roasting. Burning and bitter tastes were found in the oils prepared at roasting temperatures over 220°C. The results suggested that a high-quality product would be obtained by roasting for 25 min at 160 or 180°C, 15 min at 200°C and 5 min at 220°C when compared with the other samples. © 1997 SCI.  相似文献   

11.
The effect of high hydrostatic pressure (HHP) treatment on the structure, physicochemical and functional properties of cumin protein isolate (CPI) was investigated. More aggregates, pores, irregular conformations and bigger particle size were observed for HHP-treated CPI. HHP resulted in an increase in α-helix, a decrease in β-strand and fluorescence intensity of CPI. Surface hydrophobicity (Ho) of CPI significantly increased after HHP treatment, from 343.35 for native CPI to 906.22 at 600 MPa (P < 0.05). HHP treatment at 200 MPa reduced zeta-potential and solubility of CPI, while had little effect at 400 and 600 MPa. Emulsifying activity and stability of CPI decreased after HHP treatment, of which droplet size of emulsions significantly increased (P < 0.05). HHP-treated CPI could form heat-induced gelation at lower temperature (68.5 °C) and improved storage modulus (G′) comparing to native one (80.6 °C), suggesting that CPI might be potential protein resources as gelation substitute in food system.  相似文献   

12.
Pectinmethylesterase (PME), peroxidase (POD), and polyphenoloxidase (PPO) residual activities (RAs) and physicochemical parameters (pH, total soluble solids (TSS), water activity (aw), viscosity and color) of Tommy Atkins and Manila mango purees (MPs) were evaluated after high hydrostatic pressure (HHP) treatments at 400–550 MPa/0–16 min/34 and 59 °C. HHP treatment applied at 59 °C induced higher enzyme inactivation levels than the treatment applied at 34 °C in both MPs. The lowest RA of PME (26.9–38.6%) and POD (44.7–53%) was achieved in Manila MP treated at 450 MPa/8–16 min/59 °C and 550 MPa/4–16 min/59 °C, respectively. Otherwise, Tommy Atkins puree pressurized at 550 MPa/8–16 min/59 °C had the lowest PPO RA (28.4–34%). A slight decrease in pH and TSS values of both HHP-processed MPs at 34 and 59 °C was observed, whereas the aw remained constant after processing. The viscosity of MPs tended to augment up to 2.1 times due to the application of HHP. No significant changes were observed in color parameters of Tommy Atkins MP, except at 550 MPa and 59 °C where higher yellow index (YI) (122.4?±?3.3) and lower L* (37.3?±?5.3) were obtained compared to the untreated MP. HHP caused an increase in L* values in Manila MP, whereas no clear trend was observed in YI. HHP processing at 550 MPa combined with mild temperature (59 °C) during 8 min could be a feasible treatment to reduce enzymatic activity and preserve fresh-like quality attributes in MP.  相似文献   

13.
In this study, it was aimed to improve the physical properties of fish gelatin by using high hydrostatic pressure (HHP) and ultrasonication (US). Gelatin solutions were exposed to different pressures and ultrasonication separately and gelled afterwards. The physicochemical measurements based on gel strength, turbidity and rheology experiments showed that HHP treatment on fish and bovine gelatin stabilized the gelatin network by organising the structure and reducing the free volume. Both processing methods (HHP and US) increased the gel strength significantly (P < 0.05) compared with non-treated samples. Fourier-transform infrared spectroscopy (FTIR) results indicated that conformations of amino acids changed after the treatments. Furthermore, US treatment was shown to destroy the gelatin network, change the gelation mechanism and decreased the degree of aggregation. Both treatments improved the gel characteristics as gel strength, gelling and melting temperatures of the fish gelatin. At the end, the best combination for fish gelatin among HHP and US treatments was found as 400 MPa–10 °C–15 min pressurisation.  相似文献   

14.
The objective of this study was to assess the effect of High Pressure Homogenisation (HPH) compared with High Hydrostatic Pressure (HHP) on the microbiological quality of raw apple juice during storage at ideal (4 °C) and abuse (12 °C) temperatures. In the case of HPH, only low numbers of micro-organisms were detected after treatment at 300 MPa (typically between 2 and 3 log.ml−1). These were identified as Streptomyces spp., and numbers did not increase during storage of the juice for 35 days, irrespective of storage temperature. In the case of HHP, the total aerobic counts were also reduced significantly (p < 0.05) after treatment for 1 min at 500 and 600 MPa and the numbers did not increase significantly during storage at 4 °C. However, during storage at 12 °C the counts did increase significantly (p < 0.05) and by day 14 counts at 500 MPa were not significantly different from the control juice. This confirms that good temperature control is important if the full benefits of HHP treatment are to be realised.Frateuria aurantia dominated the microbiota of the HHP apple juice stored at 12 °C along with low levels of Bacillus and Streptomyces spp.The HPH and HHP juices both turned brown during storage indicating that neither treatment was sufficient to inactivate polyphenol oxidase. The enzyme is known to be pressure resistant and this discolouration was controlled by a heat treatment (70 °C for 1 min) used in commercial practice and given prior to HP treatment.  相似文献   

15.
《Meat science》2013,93(4):575-581
We compared the application of high hydrostatic pressure (HHP) on unfrozen carpaccio (HHP at 20 °C) and on previously-frozen carpaccio (HHP at − 30 °C). HHP at 20 °C changed the color. The pressure increase from 400 to 650 MPa and the time increment from 1 to 5 min at 400 MPa increased L* and b*. a* decreased only with 650 MPa for 5 min at 20 °C. The prior freezing of the carpaccio and the HHP at − 30 °C minimized the effect of the HHP on the color and did not change the shear force, but increased expressible moisture as compared to the untreated carpaccio. HHP at 20 °C was more effective in reducing the counts of microorganisms (aerobic total count at 30 °C, Enterobacteriaceae, psychrotrophs viable at 6.5 °C and lactic acid bacteria) than HHP at − 30 º C. With HHP at 20 °C, we observed a significant effect of pressure and time on the reduction of the counts.  相似文献   

16.
The purpose of the study was to determine the effect of high‐hydrostatic pressure (HHP) on inactivation of human norovirus (HuNoV) in oysters and to evaluate organoleptic characteristics of oysters treated at pressure levels required for HuNoV inactivation. Genogroup I.1 (GI.1) or Genogroup II.4 (GII.4) HuNoV was inoculated into oysters and treated at 300 to 600 MPa at 25 and 0 °C for 2 min. After HHP, viral particles were extracted by porcine gastric mucin‐conjugated magnetic beads (PGM‐MBs) and viral RNA was quantified by real‐time RT‐PCR. Lower initial temperature (0 °C) significantly enhanced HHP inactivation of HuNoV compared to ambient temperature (25 °C; P < 0.05). HHP at 350 and 500 MPa at 0 °C could achieve more than 4 log10 reduction of GII.4 and GI.1 HuNoV in oysters, respectively. HHP treatments did not significantly change color or texture of oyster tissue. A 1‐ to 5‐scale hedonic sensory evaluation on appearance, aroma, color, and overall acceptability showed that pressure‐treated oysters received significantly higher quality scores than the untreated control (P < 0.05). Elevated pressure levels at 450 and 500 MPa did not significantly affect scores compared to 300 MPa at 0 °C, indicating increasing pressure level did not affect sensory acceptability of oysters. Oysters treated at 0 °C had slightly lower acceptability than the group treated at room temperature on day 1 (P < 0.05), but after 1 wk storage, no significant difference in sensory attributes and consumer desirability was observed (P > 0.05).  相似文献   

17.
High hydrostatic pressure (HHP) (400 MPa/15 min, 500 MPa/10 min, 600 MPa/5 min at 20 °C) and heat (60 °C/15 min) processing of wheat beers were evaluated by examining their impacts on microorganisms, colloidal haze, flavour, foam stability and shelf‐life prediction during 84 days of storage at 20 °C. The results obtained showed that the microbiological stability of HHP beers was comparable with heat‐treated samples, and the development of both aerobic bacteria and lactic acid bacteria was inhibited for 84 days of storage. The main parameters of the wheat beer, such as ethanol content, original extract, pH, bitterness and viscosity, were scarcely affected by either treatment compared with the control samples; however, heat pasteurization increased the colour value. Heat‐pasteurized beer resulted in an increase in the phenethyl alcohol concentration and a decrease in isoamyl acetate and ethyl acetate levels compared with the HHP samples. These treatments did not affect the amount of 4‐vinylguaiacol and 4‐vinylphenol in the beer. The HHP‐treated beers had higher colloidal haze and foam stability values than the heat‐pasteurized beers. Dynamic light scattering analysis showed that HHP treatments at 500 MPa/10 min resulted in smaller and more uniform particle sizes, which had a positive effect on beer haze stability during storage. Copyright © 2016 The Institute of Brewing & Distilling  相似文献   

18.
This study evaluated the effects of high hydrostatic pressure (HHP) on the microbial counts, physicochemical properties, bioactive compounds, and antioxidant capacity of jujube pulp. Additionally, this study compared the shelf life of jujube pulp following HHP (600 MPa/20 min) and thermal treatment (100 °C/10 min) during 40 days of storage at 4 °C and 15 °C. The microbial count of HHP-treated jujube pulp (≥ 400 MPa/20 min) was below the detection limit. Total soluble solids and total sugars were not significantly affected by HHP processing, and > 90% ascorbic acid was retained in HHP-treated samples. HHP slightly reduced pH and browning degree and increased total phenolic content, flavonoid content, and antioxidant capacity. HHP can be used as an alternative to thermal pasteurization of freshly squeezed jujube pulp.Industrial relevanceEffects of high hydrostatic pressure (HHP) processing and thermal treatment (TT) on microbiological quality, physicochemical properties, bioactive compounds and antioxidant activity in jujube pulp were investigated. Greater inhibition of microorganisms and better retention of ascorbic acid, total phenolics, flavonoid and antioxidant capacity were observed after HHP-treatment. The available data could be used to design the HHP parameters for high quality jujube juice. Further, this research would provide a useful method for preservation of jujube products and potential technical support for jujube commercial production.  相似文献   

19.
The inactivation of bacteria naturally present in strawberry pulp was investigated after high hydrostatic pressure (HHP) treatment at pressure levels up to 600 MPa at 25 °C for 5 ~ 25 min. Five strains of pressure‐resistant bacteria designated as A, B, C, D and E were isolated and identified. The five strains were gram‐positive, spore‐forming, rods or rod in chains. Growth of the strains was observed at 30 ~ 45 °C, and strain B also grew well at 55 °C. They could produce acid from glucose and were catalase‐positive. Analysis of 16S rRNA gene sequences showed that the five strains belonged to the genus Bacillus. Strain A and D exhibited the greatest 16S rRNA gene sequence similarity of 99% with B. licheniformis and B. firmus, respectively. By combination of phenotypic characteristics and 16S rRNA gene sequences, strain C was B. mycoides and E was B. pumilus. On the basis of physiological and biochemical characteristics, gyrB gene sequences analysis and whole‐cell fatty acids analysis, strain B was B. amyloliquefaciens. Further studies showed that strain B (B. amyloliquefaciens) exhibited the highest pressure resistance, and it was reduced by 4.62‐log after treatment at 600 MPa for 25 min at 25 °C as the most effective observed inactivation.  相似文献   

20.
High hydrostatic pressure (HHP) is used for microbial inactivation in foods. Addition of carbon dioxide (CO2) to HHP can improve microbial and enzyme inactivation. This study investigated microbial effects of combined HHP and CO2 on Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae, and evaluated sensory attributes of treated feijoa fruit puree (pH 3.2). Microorganisms in their growth media and feijoa puree were treated with HHP alone (HHP), or saturated with CO2 at 1 atm (HHPcarb), or 0.4%w/w of CO2 was injected into the package (HHPcarb+CO2). Microbial samples were processed at 200 to 400 MPa, 25 °C, 2 to 6 min. Feijoa samples were processed at 600 MPa, 20 °C, 5 min, then served with and without added sucrose (10%w/w). Treated samples were analyzed for microbial viability and sensory evaluation. Addition of CO2 enhanced microbial inactivation of HHP from 1.7‐log to 4.3‐log reduction in E. coli at 400 MPa, 4 min, and reduction of >6.5 logs in B. subtilis (vegetative cells) starting at 200 MPa, 2 min. For yeast, HHPcarb+CO2 increased the inactivation of HHP from 4.7‐log to 6.2‐log reduction at 250 MPa, 4 min. The synergistic effect of CO2 with HHP increased with increasing time and pressure. HHPcarb+CO2 treatment did not alter the appearance and color, while affecting the texture and flavor of unsweetened feijoa samples. There were no differences in sensory attributes and preferences between HHPcarb+CO2 and fresh sweetened products. Addition of CO2 in HHP treatment can reduce process pressure and time, and better preserve product quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号