首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
燃料润滑性是用作压燃式发动机的燃料的重要特性之一.煤基燃料二甲醚、甲醇和F-T柴油都是压燃式发动机的良好清洁代用燃料,但是这些煤基代用燃料的物理化学特性与传统的柴油燃料不同,当前的燃料润滑性评定方法可能不是非常适用于这些煤基燃料,因此研究这些煤基燃料润滑性的评定方法是当务之急.分析了国际上通用的燃料润滑性评定方法HFRR、BOCLE和SLBOCLE方法的优缺点,并指出油泵试验法可能是一种较适合煤基车用替代燃料润滑性评定的方法.  相似文献   

2.
采用柴油润滑性高频往复试验机(HFRR)和喷气燃料球柱润滑性评定仪(BOCLE)考察环烷酸抗磨剂对喷气燃料润滑性能的影响及其与喷气燃料其他添加剂的配伍性能。结果表明:喷气燃料对环烷酸具有较好的感受性,环烷酸添加量为10μg/g时,即可满足军用喷气燃料对润滑性能的要求,添加量为60μg/g时,即可满足船用馏分燃料对润滑性能的使用需求,添加量为100μg/g时,即可达到车用柴油馏分对润滑性能的要求。环烷酸抗磨剂与抗静电剂、金属钝化剂和防冰剂具有较好的配伍性能,与防冰剂具有较好的协同效应,与抗静电剂具有较弱的协同效果,与金属钝化剂无协同作用。  相似文献   

3.
喷气燃料润滑性的评定   总被引:1,自引:0,他引:1  
采用ASTM D5001-90a和SH/T 0073两种方法对我国3号喷气燃料的润滑性进行评定,同时评定了进口JetA-1喷气燃料的磨痕宽度(WSD值)。结果表明,我国成品3号喷气燃料的润滑性优于进口JetA-1喷气燃料。进一步分析了WSD值与Km值两者存在线性关系,当WSD为0.65mm和0.79mm时,Km值分别为126和90。  相似文献   

4.
对不同来源的生物柴油、车用柴油及其生物柴油调合燃料的润滑性能及影响因素采用高频往复试验机法(HFRR)进行研究,认为不同原料的生物柴油其调合柴油燃料的润滑性能存在差异;生物柴油的精制深度会减弱调合柴油燃料的润滑性能;生物柴油体积分数大于20%的调合燃料其润滑性基本与纯生物柴油达到一致;生物柴油体积分数为5%的调合燃料中超标的水含量会降低其润滑性能,但幅度不大,其润滑性主要由5%的生物柴油决定,抗氧、防锈剂、流动改进剂不影响润滑性能;与车用柴油不同,生物柴油调合燃料的运动黏度与磨斑直径没有很好的对应关系。  相似文献   

5.
活性硫化物腐蚀银片,但是喷气燃料中非烃化合物有良好润滑性,故不宜采取普通吸附方法处理变质喷气燃料,以免大量非烃组分流失,高效、选择性强的金属-派利蛋白胶体化合物,可以协调解决变质喷气燃料腐蚀问题而不能影响润滑性。  相似文献   

6.
柴油是柴油发动机燃料供给系统的润滑剂,其润滑性影响发动机动力性和经济性.采用高频往复试验,研究了国产直馏柴油的润滑性,采用SRV模拟试验和柴油发动机喷射系统台架试验, 研究了国产直馏柴油的抗磨性能.结果表明,低硫低润滑性的柴油会导致发动机柱塞偶件严重磨损,而高硫低润滑性也可能导致柴油发动机高压喷射系统出现严重的磨损,应根据柴油发动机抗磨损需求, 研究提出柴油润滑性指标.  相似文献   

7.
采用四球机和高频往复试验机研究了一种二甲醚(DME)专用润滑性改进剂在不同基础试验液体中的润滑特性,考察了其与醚的互溶性能及对金属的腐蚀性能,并与其它润滑性改进剂进行了对比,从而为DME发动机选择合适的燃料润滑改进剂提供了依据。结果表明:该DME专用润滑性改进剂添加量少,润滑效果显著,与DME相容性好,没有腐蚀性。  相似文献   

8.
柴油成膜润滑机制探讨   总被引:2,自引:0,他引:2  
胡泽祥  左凤  王昆 《润滑与密封》2007,32(11):161-164
柴油是发动机燃料供给系统的润滑剂,其润滑性非常重要。在高频往复试验机上对不同柴油样品进行了润滑性评价,对试验后的金属件进行磨斑表面分析,通过对比研究,探讨了柴油成膜润滑机制。结果表明,柴油成膜组分少,不能形成良好润滑保护膜,或者因腐蚀反应不能形成有效润滑保护膜,是柴油润滑性差并导致偶件磨损的原因。  相似文献   

9.
本文介绍了喷气燃料润滑性能模拟评定试验机的工作原理、结构组成和对其试验所得的测试结果。还对其研制开发背景、执行标准和应用前景作了介绍。  相似文献   

10.
本文介绍了喷气燃料润滑性能模拟评定试验机的工作原理、结果组成和对其试验所得的测试结果。还对其研制开发背景、执行标准和应用前景作了介绍。  相似文献   

11.
柴油润滑性的机制研究   总被引:1,自引:0,他引:1  
利用作者从事柴油润滑性研究与检测工作十年来积累的大量数据,将柴油的常规理化分析指标以及质谱分析结果与柴油润滑性的相关性进行归纳总结,探讨柴油润滑性的机制。结果表明:脱硫工艺过程与柴油的润滑性有很好的相关性;磨损对某些含硫物质的多少并不敏感;柴油中氮含量越高,润滑性越好;柴油的黏度和密度越大,润滑性越好;馏出点温度越高,馏分的润滑性越好;饱和烃中的链烷烃和环烷烃对润滑性起负作用,而非饱和烃对润滑性有贡献,在芳烃组分中,多环芳烃比单环芳烃对提高润滑性的贡献大。  相似文献   

12.
利用作者多年来从事柴油润滑性检测工作的经验积累,对影响柴油润滑性检测结果的诸多因素进行探讨,介绍柴油抗磨剂以及生物柴油的检测情况,这对即将在全国范围开展的柴油润滑性检测工作具有一定的指导意义.  相似文献   

13.
二甲醚在常温常压下为气态,不能用传统方法评估其润滑性能。根据低沸点燃油的物理特性和高频往复机(HFRR)的基本原理,设计可加压的高频往复机,初步搭建用于低沸点燃油的摩擦磨损试验台架,并采用常规燃油进行油品的可分辨性试验。结果表明,该台架可以用于评价不同油品的润滑性,为二甲醚等低沸点燃油润滑性能评估方法的建立奠定了基础。  相似文献   

14.
Hydrotreated fuels lack lubricity. Dilution with chemically treated conventional fuels is reported to restore lubricity. Studies revealed that some conventional fuels have lubricity inferior to the hydrotreated fuels. Thus dilution with conventional fuel is not a sure cure.  相似文献   

15.
16.
Various vegetable‐oil derived esters using methyl, ethyl, butyl, and 2‐propyl alcohols were prepared and tested as diesel fuel lubricity additives in a roller‐on‐cylinder lubricity evaluator. At1% additive treat rate, the canola methyl and 2‐propyl esters, the best‐performing esters, increased the lubricity number of a reference fuel by 60%. Statistical analyses indicated strong effects of fatty acids and alcohols on the wear, friction, and lubricity number of the fuel. While no single fatty acid was identifiably responsible for the wear reduction, certain non‐linoleic compounds correlated with the wear data in a semi‐log relationship. The low‐temperature behaviour of the biodiesel was studied using differential scanning calorimetry. The major transitional peak temperature of the biodiesel esters changed with the melting points of their primary fatty acids, and decreased with the lengthening and branching of the tail alkyl groups.  相似文献   

17.
To reduce their fuel related logistic burden, NATO Armed Forces are advancing the use of a single fuel for both aircraft and ground equipment. To this end, F-34 is replacing distillate diesel fuel in many applications. However, tests conducted with kerosene on High Frequency Reciprocating Rig, showed that it causes unacceptable wear due to the poor lubricity of aviation fuel. In order to make this type of fuel compatible with direct injection compression engines, tests were carried out with ten mono–carboxylic acid esters to improve the lubricity of kerosene. Tribological results showed that all esters tested, were suitable for increasing the kerosene lubricity to a satisfactory level. Among the esters of the same molecular type, those having the ester group around the middle of the molecule appear to have better lubrication performance.  相似文献   

18.
In the last few years there has been an increasing requirement for the provision of environmentally benign diesel fuels. However, the introduction of such fuels into service has been associated with high levels of field failure of rotary distribution fuel pumps due to wear. This is because the refining processes necessary to produce ecologically acceptable fuels result in greatly reduced levels of sulphur compounds, aromatics, and polar material, many of which are potential lubricity agents. This paper describes the development of bench test methods to evaluate diesel fuel lubricity and thus enable the identification of appropriate ‘solutions’. It has been found that the key to obtaining good correlation between field experience and bench tests is (1) to reproduce the thermal conditions present in operating pump contacts and (2) to ensure that the same mechanisms of wear operate in the bench test as in the pump environment. The physical and chemical processes involved in the lubrication of fuel pumps and the influence of temperature on these processes are outlined. As a result of the work described in this paper, effective additive solutions have been discovered for controlling the failure of diesel fuel pumps in the field and a provisional ISO (ISO/TC 22 / SC 7 M595: ‘Diesel engines - diesel fuel - performance requirement and test method for assessing fuel lubricity’) and CEC test method for assessing diesel fuel lubricity has also been developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号