首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 1.8-V 10-Gb/s fully integrated CMOS optical receiver analog front-end   总被引:2,自引:0,他引:2  
A fully integrated 10-Gb/s optical receiver analog front-end (AFE) design that includes a transimpedance amplifier (TIA) and a limiting amplifier (LA) is demonstrated to require less chip area and is suitable for both low-cost and low-voltage applications. The AFE is fabricated using a 0.18-/spl mu/m CMOS technology. The tiny photo current received by the receiver AFE is amplified to a differential voltage swing of 400 mV/sub (pp)/. In order to avoid off-chip noise interference, the TIA and LA are dc-coupled on the chip instead of ac-coupled though a large external capacitor. The receiver front-end provides a conversion gain of up to 87 dB/spl Omega/ and -3dB bandwidth of 7.6 GHz. The measured sensitivity of the optical receiver is -12dBm at a bit-error rate of 10/sup -12/ with a 2/sup 31/-1 pseudorandom test pattern. Three-dimensional symmetric transformers are utilized in the AFE design for bandwidth enhancement. Operating under a 1.8-V supply, the power dissipation is 210 mW, and the chip size is 1028 /spl mu/m/spl times/1796 /spl mu/m.  相似文献   

2.
This paper presents the design of an optical receiver analog front-end circuit capable of operating at 2.5 Gbit/s. Fabricated in a low-cost 0.35-/spl mu/m digital CMOS process, this integrated circuit integrates both transimpedance amplifier and post limiting amplifier on a single chip. In order to facilitate high-speed operations in a low-cost CMOS technology, the receiver front-end has been designed utilizing several enhanced bandwidth techniques, including inductive peaking and current injection. Moreover, a power optimization methodology for a multistage wide band amplifier has been proposed. The measured input-referred noise of the optical receiver is about 0.8 /spl mu/A/sub rms/. The input sensitivity of the receiver front-end is 16 /spl mu/A for 2.5-Gbps operation with bit-error rate less than 10/sup -12/, and the output swing is about 250 mV (single-ended). The front-end circuit drains a total current of 33 mA from a 3-V supply. Chip size is 1650 /spl mu/m/spl times/1500 /spl mu/m.  相似文献   

3.
The self-phase modulation coefficient /spl gamma/ of 1310 nm multiple-quantum-well (MQW) semiconductor optical amplifiers has been investigated. It is found to vary from 16/spl times/10/sup 4/ W/sup -1/ m/sup -1/ for low driving conditions to 3/spl times/10/sup 4/ W/sup -1/ m/sup -1/ for high-driving conditions. This implies that the amount of self-phase modulation occurring in the amplifier is between 1.5-10/spl times/ more than that occurring in the optical fiber following the amplifier. The additional self-phase modulation caused by the semiconductor optical amplifier may be used to achieve compensation for fiber dispersion in optical communication systems at significantly lower average power levels. The linewidth enhancement factor /spl alpha//sub H/ was found to increase from a value of 2 at low driving conditions, in agreement with results reported for MQW lasers, to a value of 3 at high-driving conditions.  相似文献   

4.
Broad-band phase-locked loops (PLLs) are proposed for burst-mode clock and data recovery in optical multiaccess networks. Design parameters for a charge-pump PLL-based clock and data recovery (CDR) with fast phase acquisition are derived using a time-domain model that does not assume narrow loop bandwidth or small phase errors. Implementation in a half-rate CDR circuit confirms a clock phase acquisition time of 40 ns, or 100 bits at 2.488-Gb/s rate, and data recovery at 1.244-Gb/s rate with a bit-error rate of 1/spl times/10/sup -10/ (2/sup 14/-1 pseudorandom binary sequence with Manchester-encoding). The CDR was fabricated in complementary metal-oxide-semiconductor 0.18-/spl mu/m technology in an area of 1/spl times/1 mm/sup 2/ and consumes 54 mW of power from a 1.8-V supply.  相似文献   

5.
Full characterization of packaged Er-Yb-codoped phosphate glass waveguides   总被引:2,自引:0,他引:2  
We present a procedure for the characterization of packaged Er-Yb-codoped phosphate glass waveguides. The procedure is based on precise measurements of the output optical powers when the waveguide is diode-laser pumped at 980 nm. The dependence of these optical powers on the input pump power is then fitted to the results from a numerical model that describes in detail the propagation of the optical powers inside the waveguide. The best fit is obtained for the following parameters: the signal wavelength scattering losses are /spl alpha/(1534)=8.3/spl times/10/sup -2/ dB/cm, the Yb/sup 3+/ absorption and emission cross sections (/spl ap/980 nm) are 5.4/spl times/10/sup -25/ m/sup 2/ and 7.0/spl times/10/sup -25/ m/sup 2/, the Er/sup 3+/ absorption and emission cross sections (/spl ap/980 nm) are 1.6/spl times/10/sup -25/ m/sup 2/ and 1.2/spl times/10/sup -25/ m/sup 2/, the Yb/sup 3+/--Er/sup 3+/ energy-transfer coefficient is 1.8/spl times/10/sup -23/ m/sup 3//s and the cooperative-upconversion coefficient is 8/spl times/10/sup -25/ m/sup 3//s. An approximate method is introduced that allows the determination of the absorption and emission cross section distributions for the erbium /sup 4/I/sub 13/2//spl hArr//sup 4/I/sub 15/2/ transition from the amplified spontaneous emission power spectrum.  相似文献   

6.
A new approach to photoreceiver design is described based on the functionality of an optoelectronic thyristor. The receiver eliminates the transimpedance amplifier and the decision circuit by utilizing the internal gain of the thyristor and its nonlinear thresholding property. The sensitivity is determined by the shot noise on the input signal to be 360 photons per bit at a bit-error rate of 10/sup -9/. The speed of the photoreceiver is determined by the switching times of the thyristor. An output voltage signal from 0 to 1.5 V is obtained with switch on and off times of 12.5 ps and input photocurrent densities of 10/sup 4/ A/cm/sup 2/. The switch off time is equally as fast as the switch on due to the absence of stored charge in the modulation doped structure. The key to the high speed is the utilization of the third and fourth terminal contacts to the thyristor and the integration of the biasing transistors, which control the switching currents. An input optical signal of 0.5 mW will achieve this bandwidth in a device size of 0.2 /spl mu/m/spl times/12.5 /spl mu/m.  相似文献   

7.
High-speed pulse response and receiver sensitivity at 1.55 µm were measured at data rates ranging from 400 Mbits/s to 2 Gbits/s, in order to elucidate characteristics of a reach-through p/sup +/nn/sup -/ Ge APD. The p/sup +/nn/sup -/ Ge APD receiver provided a 2 Gbit/s received optical power level of -32.0 dBm at 1.55 µm and a 10/sup -9/ error rate, which was 4 dB better than the receiving level with a p/sup +/n Ge APD. Detector performance at 1.3 µm was also studied for comparison with performance at 1.55 um. Single-mode fibers, which have 0.54 dB/km loss and zero dispersion at 1.55 µm, and an optical transmitter-receiver, whose repeater gain is 29.2 dB, have enabled 51.5 km fiber transmission at 2 Gbits/s. The transmission system used in this study has a data rate repeater-spacing product of 103 (Gbits/s) /spl dot/ km at 1.55 µm. Optical pulse broadening and fiber dispersion were also studied, using 1.55 and 1.3 µm dispersion free fibers. Future repeater spacing prospects for PCM-IM single-mode fiber transmission systems are discussed based on these experimental results.  相似文献   

8.
This paper describes a CMOS imaging receiver for free-space optical (FSO) communication. The die contains 256 optical receive channels with -47 dBm optical sensitivity and 30 dB optical dynamic range at 500 kb/s/channel while consuming 67 mW. Received signals are amplified by digitally self-calibrated open-loop amplifiers and digitized before clock and data recovery. The sampled data also provide inputs for digital automatic gain and offset control loops closed around the analog amplifier chain to compensate for signal variations due to atmospheric turbulence and daylight interference. Gain control logic can adapt to incident signals over the 30 dB dynamic range within 28 bit periods. Low-power logic design and analog circuit techniques are used to minimize digital crosstalk to single-ended photodetectors referenced to a bulk substrate. Local arbitration circuitry at each channel forms an intrachip data passing network to multiplex received data words from the 16 /spl times/ 16 array onto a common off-chip bus. The 1.6 M transistor mixed-signal die fabricated in a 0.25 /spl mu/m CMOS process measures 6.5/spl times/6.5 mm/sup 2/. Reception at 500 kb/s through a 1.5 km atmospheric channel is demonstrated with 3 mW optical transmit power during nighttime and daylight hours.  相似文献   

9.
A 10-Gb/s receiver is presented that consists of an equalizer, an intersymbol interference (ISI) monitor, and a clock and data recovery (CDR) unit. The equalizer uses the Cherry-Hooper topology to achieve high-bandwidth with small area and low power consumption, without using on-chip inductors. The ISI monitor measures the channel response including the wire and the equalizer on the fly by calculating the correlation between the error in the input signal and the past decision data. A switched capacitor correlator enables a compact and low power implementation of the ISI monitor. The receiver test chip was fabricated by using a standard 0.11-/spl mu/m CMOS technology. The receiver active area is 0.8 mm/sup 2/ and it consumes 133 mW with a 1.2-V power supply. The equalizer compensates for high-frequency losses ranging from 0 dB to 20 dB with a bit error rate of less than 10/sup -12/. The areas and power consumptions are 47 /spl mu/m /spl times/ 85 /spl mu/m and 13.2 mW for the equalizer, and 145 /spl mu/m /spl times/ 80 /spl mu/m and 10 mW for the ISI monitor.  相似文献   

10.
We report the realization of a 32-channel tunable optical receiver module for packet-switched multiwavelength computer networks. The tunable receiver consists of a planar array waveguide grating demultiplexer, photodetector array and followed by selectable receivers. The channel selection is based on sequential switching of the received optical signals in stages at the analogue level. Typical receiver sensitivity is -24 dBm at 10/sup -9/, using a 700-Mb/s nonreturn-to-zero (NRZ) pseudorandom binary sequence (PRBS). The channel switching time is /spl sim/40 ns.  相似文献   

11.
A novel multifunctional transceiver for chip-to-chip optical interconnects operating at 2.5 Gbit/s is proposed, which shares a common block between a receiver and a transmitter. This transceiver provides four conversion functions - electrical-to-optical, optical-to-optical, optical-to-electrical, and electrical-to-electrical - depending on the selection switch on a single chip. The whole chip integrated in 0.18 /spl mu/m CMOS occupies an area measuring 0.82/spl times/0.82 mm/sup 2/.  相似文献   

12.
A micromachined Pirani gauge with dual heat sinks   总被引:1,自引:0,他引:1  
This paper reports a micromachined Pirani gauge with dual heat sinks that can be integrated with microelectromechanical systems (MEMS) devices inside a vacuum package to monitor long-term pressure changes and stability inside the package. The Pirani gauge utilizes small gaps (<1 /spl mu/m) between its heater and two thermal heat sinks to obtain large dynamic range (20 mtorr to 2 torr) and high sensitivity (3.5/spl times/10/sup 5/ (K/W)/torr). The gauge is 2/spl times/2 mm/sup 2/ in size, is fabricated using the dissolved wafer process (DWP) on a glass substrate, and utilizes dielectric bridges for signal routing. Measurements show the low end of the dynamic range can be extended by reducing the gap distance between the heater and thermal sinks, which matches well with analytical modeling. This gauge shows an uncertainty of 50 /spl mu/torr and a detectable leak rate of 3.1/spl times/10/sup -16/ cm/sup 3//s, assuming a common micropackage volume of 1.6/spl times/10/sup -5/ cm/sup 3/, which represents at least four orders of magnitude improvement over traditional leak testing.  相似文献   

13.
The SONET OC-192 receiving performance of In/sub 0.53/Ga/sub 0.47/As p-i-n photodiode grown on linearly graded metamorphic In/sub x/Ga/sub 1-x/P buffered GaAs substrate is reported. With a low-cost TO-46 package, such a device exhibits a frequency bandwidth up to 8 GHz, a bit-error rate (BER) of 10/sup -9/ at 10 Gb/s, a sensitivity of -17.8 dBm, and a noise equivalent power of 3.4/spl times/10/sup -15/ W/Hz/sup 1/2/ owing to its ultralow dark current of 3.6/spl times/10/sup -7/ A/cm/sup 2/. Eye diagram analysis at 10 Gb/s without transimpedance amplification reveals a statistically distributed Q-factor of 8.21, corresponding to a minimum BER of 1.1/spl times/10/sup -16/ at receiving power of -6 dBm.  相似文献   

14.
Optimized second-harmonic generation (SHG) in quantum cascade (QC) lasers with specially designed active regions is reported. Nonlinear optical cascades of resonantly coupled intersubband transitions with giant second-order nonlinearities were integrated with each QC-laser active region. QC lasers with three-coupled quantum-well (QW) active regions showed up to 2 /spl mu/W of SHG light at 3.75 /spl mu/m wavelength at a fundamental peak power and wavelength of 1 W and 7.5 /spl mu/m, respectively. These lasers resulted in an external linear-to-nonlinear conversion efficiency of up to 1 /spl mu/W/W/sup 2/. An improved 2-QW active region design at fundamental and SHG wavelengths of 9.1 and 4.55 /spl mu/m, respectively, resulted in a 100-fold improved external linear-to-nonlinear power conversion efficiency, i.e. up to 100 /spl mu/W/W/sup 2/. Full theoretical treatment of nonlinear light generation in QC lasers is given, and excellent agreement with the experimental results is obtained. For the best structure, a second-order nonlinear susceptibility of 4.7/spl times/10/sup -5/ esu (2/spl times/10/sup 4/pm/V) is calculated, about two orders of magnitude above conventional nonlinear optical materials and bulk III-V semiconductors.  相似文献   

15.
Nitride-based light-emitting diodes with Ni/ITO p-type ohmic contacts   总被引:1,自引:0,他引:1  
The optical and electrical properties of Ni(5 nm)-Au(5 nm) and Ni(3.5 nm)-indium tin oxide (ITO) (60 nm) films were studied. It was found that the normalized transmittance of Ni/ITO film could reach 87% at 470 nm, which was much larger than that of the Ni-Au film. It was also found that the specific contact resistance was 5 /spl times/ 10/sup -4/ /spl Omega/ /spl middot/ cm/sup 2/ and 1 /spl times/ 10/sup -3/ /spl Omega/ /spl middot/ cm/sup 2/, respectively, for Ni-Au and Ni/ITO on p-GaN. Furthermore, it was found that the 20 mA output power of light-emitting diode (LED) with Ni-Au p-contact layer was 5.26 mW. In contrast, the output power could reach 6.59 mW for the LED with Ni/ITO p-contact layer.  相似文献   

16.
The potential of 1.3-/spl mu/m AlGaInAs multiple quantum-well (MQW) laser diodes for uncooled operation in high-speed optical communication systems is experimentally evaluated by characterizing the temperature dependence of key parameters such as the threshold current, transparency current density, optical gain and carrier lifetime. Detailed measurements performed in the 20/spl deg/C-100/spl deg/C temperature range indicate a localized T/sub 0/ value of 68 K at 98/spl deg/C for a device with a 2.8 /spl mu/m ridge width and 700-/spl mu/m cavity length. The transparency current density is measured for temperatures from 20/spl deg/C to 60/spl deg/C and found to increase at a rate of 7.7 A/spl middot/cm/sup -2//spl middot/ /spl deg/C/sup -1/. Optical gain characterizations show that the peak modal gain at threshold is independent of temperature, whereas the differential gain decreases linearly with temperature at a rate of 3/spl times/10/sup -4/ A/sup -1//spl middot//spl deg/C/sup -1/. The differential carrier lifetime is determined from electrical impedance measurements and found to decrease with temperature. From the measured carrier lifetime we derive the monomolecular ( A), radiative (B), and nonradiative Auger (C) recombination coefficients and determine their temperature dependence in the 20/spl deg/C-80/spl deg/C range. Our study shows that A is temperature independent, B decreases with temperature, and C exhibits a less pronounced increase with temperature. The experimental observations are discussed and compared with theoretical predictions and measurements performed on other material systems.  相似文献   

17.
A parallel-optical interconnect with 12 channels operating at 8.5 Gb/s giving an aggregate data rate of 102 Gb/s is demonstrated, to the authors' knowledge, for the first time. The paper describes and demonstrates 13 /spl times/ 16-mm cross-section 12-channel parallel-optic transmitter and receiver modules with each channel operating at a data rate of 8.5-10 Gb/s. This was achieved using bottom-emitting 990-nm vertical-cavity surface-emitting lasers and bottom-illuminated InGaAs-InP photodetectors flip-chip bonded directly to 12-channel transmitter and receiver integrated circuits, respectively. In addition, 102-Gb/s link results are demonstrated over 100 m of 50-/spl mu/m-core standard multimode ribbon fiber. A bit-error ratio of <10/sup -13/ was measured on a single channel after transmission through 100 m of multimode fiber at a data rate of 8.5 Gb/s with all 12 channels operating simultaneously.  相似文献   

18.
A dependency of quantum efficiency of nn/sup +/pp/sup +/ silicon complementary metal-oxide-semiconductor integrated light-emitting devices on the current density through the active device areas is demonstrated. It was observed that an increase in current density from 1.6/spl times/10/sup +2/ to 2.2/spl times/10/sup +4/ A/spl middot/cm/sup -2/ through the active regions of silicon n/sup +/pp/sup +/ light-emitting diodes results in an increase in the external quantum efficiency from 1.6/spl times/10/sup -7/ to 5.8/spl times/10/sup -6/ (approximately two orders of magnitude). The light intensity correspondingly increase from 10/sup -6/ to 10/sup -1/ W/spl middot/cm/sup -2//spl middot/mA (approximately five orders of magnitude). In our study, the highest efficiency device operate in the p-n junction reverse bias avalanche mode and utilize current density increase by means of vertical and lateral electrical field confinement at a wedge-shaped n/sup +/ tip placed in a region of lower doping density and opposite highly conductive p/sup +/ regions.  相似文献   

19.
This paper presents the first fully integrated SONET OC-192 transmitter and receiver fabricated in a standard 0.18-/spl mu/m CMOS process. The transmitter consists of an input data register, 16-b-wide first-in-first-out (FIFO) circuit, clock multiplier unit (CMU), and 16:1 multiplexer to give a 10-Gb/s serial output. The receiver integrates an input amplifier for 10-Gb/s data, clock and data recovery circuit (CDR), 1:16 demultiplexer, and drivers for low-voltage differential signal (LVDS) outputs. An on-chip LC-type voltage-controlled oscillator (VCO) is employed by both the transmitter and receiver. The chipset operates at multiple data rates (9.95-10.71 Gb/s) with functionality compatible with the multisource agreement (MSA) for 10-Gb transponders. Both chips demonstrate SONET-compliant jitter characteristics. The transmitter 10.66-GHz output clock jitter is 0.065 UI/sub pp/ (unit interval, peak-to-peak) over a 50-kHz-80-MHz bandwidth. The receiver jitter tolerance is more than 0.4 UI/sub pp/ at high frequencies (4-80 MHz). A high level of integration and low-power consumption is achieved by using a standard CMOS process. The transmitter and receiver dissipate a total power of 1.32 W at 1.8 V and are packaged in a plastic ball grid array with a footprint of 11/spl times/11 mm/sup 2/.  相似文献   

20.
This paper presents a monolithic optical detector, consisting of an integrated photodiode and a preamplifier in a standard 0.18-/spl mu/m CMOS technology. A data rate of 3 Gb/s at BER <10/sup -11/ was achieved for /spl lambda/=850 nm with 25-/spl mu/W peak-peak optical power. This data rate is more than four times than that of current state-of-the-art optical detectors in standard CMOS reported so far. High-speed operation is achieved without reducing circuit responsivity by using an inherently robust analog equalizer that compensates (in gain and phase) for the photodiode roll-off over more than three decades. The presented solution is applicable to various photodiode structures, wavelengths, and CMOS generations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号