首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Metal concentration of plants growing on contaminated soils among other factors may depend on changes in the hydrological regime of the soil. Foliar and stem metal concentrations in Salix cinerea (grey sallow) were measured in 2 consecutive growing seasons on a submerged sediment-derived soil that underwent gradual terrestrialisation. Foliar and stem cutting concentrations for Cd, Zn and Mn increased on plots that were submerged during the first year, but emerged in the second year of monitoring. The litter layer was sampled under the shrubs of a plot with a recent abrupt change in hydrological regime and on the reference plot. It was separated in three size fractions through sieving. Analysis of the litter fractions suggested that Cd and Zn concentrations remained constant during fragmentation. However, Cr, Cu, Ni and Pb concentrations increased, which was attributed to adhesion of mineral soil particles on the fine fraction. After correction for the metal content in the mineral fraction, an increase in Cd, Mn and Cu concentration during fragmentation of the organic part of the litter layer was observed for the polluted plot. Net litter layer decomposition rate was low, which may indicate low colonisation by the decomposing community. Terrestrialisation resulted in higher Cd, Mn and Zn uptake by willows. The deviant litter layer metal concentrations for Cd, Zn and Mn and low decomposition rate must be further monitored. Feasibility of measures aiming at re-establishing wetland conditions for the dredged sediment landfill must be considered.  相似文献   

2.
Metal removal by biological solubilization in three strongly contaminated sediments was carried out in a two-liter stirred bioreactor. Biological treatment yielded metal removal efficiencies in the range of 11-30%, 43-57%, 60-79%, 61-90%, 18-21%, 0-10% for Pb, Cu, Zn, Cd, Ni and Cr, respectively. The treated sediments were then rinsed with a NaCl solution (0.5 M), resulting in an increase by nearly 47% in Pb removal for the three sediments, while for other metals (Cu, Zn, Cd, Ni, Cr), the NaCl rinse did not seem to allow any significant increase in metal solubilization. A standard procedure of sequential selective extraction (SSE) was applied to the sediments before and after each treatment. With regard to Pb, Zn and Cd, the carbonate bound fractions (2/3 sediments) represented 18-42% of metals prior to treatment, while the iron and manganese oxides bound fraction constituted 39-60% of metals for the three sediments. Between 90 and 100% of Pb, Zn and Cd removed by the process came from the fractions bound to carbonates and from those bound to Fe and Mn oxides. The organic matter and sulfide bound fractions contained 65-72% of total Cu present before treatment and the process removed, on average, 63% Cu present in this fraction. In contrast, Ni and Cr were found mainly in the residual fractions (50-80%). Finally, this biological treatment did not solubilize Cr appreciably, while removal of Ni mostly originated from the carbonate and Fe/Mn oxides fractions (70-80%).  相似文献   

3.
Elemental concentrations and metal bioaccessibility in UK household dust   总被引:2,自引:0,他引:2  
Concentrations of metals and C, H and N have been determined in 32 household dust samples collected from four regions of the UK. For a given metal, total concentrations (available to aqua regia digestion) were highly variable, but geometric mean concentrations (in mug g(-1): Al=7950; Cd=1.2; Cu=301; Fe=8740; Mn=524; Ni=53.1; Pb=150; Sn=23.9; Zn=622) were, in general, consistent with equivalent values reported in the contemporary literature for a number of locations worldwide. Of the metals studied, Cd, Cu, Pb, Sn and Zn exhibited greatest enrichment in the household environment relative to their respective crustal abundances. Bioaccessibility of metals in dust, evaluated using a simulated gastric solution (pepsin in dilute HCl), ranged from about 10% of total metal for Sn to about 80% for Cu, Pb and Zn, indicating that enrichment alone is not necessarily a good proxy for assessing metal exposure or impact. Concentrations of C, H and N in household dust, determined combustiometrically, ranged from 11% to 46.2%, 1.5% to 7.0% and 1.0% to 8.5%, respectively. Carbon to hydrogen ratios of dust samples were relatively uniform (arithmetic mean 7.3; rsd<10%), reflecting the similarity of C:H ratios in various source materials. In contrast, C:N ratios were highly variable (arithmetic mean 8.5; rsd>40%), reflecting the variability of C:N ratios in source materials (e.g. protein=2.1; soil humics=14; lignin=78). Lack of correlation between metal concentrations and concentrations or ratios of C, H and N was attributed to the heterogeneous distribution of metal concentrations among the array of internal and external sources of household dust.  相似文献   

4.
Soybean (Glycine max (L.) Merr.) uptake of the elements, Cd, Ni, Pb, Cu, Zn and Mn, from a sewage sludge-amended Mecklenburg soil was conducted in the greenhouse. “Bragg” soybeans were grown in pots for five weeks at which time the tops and roots were sampled separately for elemental analysis. Soil samples from each pot were extracted with DTPA (diethylenetriaminepentaacetic acid) and the concentration of extractable elements correlated with the elemental content in the soybean plant. There was a significant increase in dry matter production with sludge treatment. Concentrations of Cd, Ni and Pb in the soybean shoots and roots increased from sludge-amended soil as compared to the control. The metal concentration in the soybean tissue increased with increasing levels of sludge amendment. Uptake of the heavy metals was greater by the roots than by the shoots indicating some barrier to movement of the metals from roots to shoots. The DTPA extractable Cd in sludge-amended soil increased significantly, and showed correlation to the soybean tissue metal concentrations. As for the micronutrients, Cu increased in the soybean shoot as the extractable Cu increased. There was no significant relationship between soybean tissue Zn and Mn and extractable Zn and Mn.  相似文献   

5.
Influence of Halimione portulacoides, commonly found in temperate salt marshes, on sediment metal contents, speciation and potential mobility in case of sediment re-suspension was evaluated. Both colonized and non-colonized sediments were studied for total Cd, Cu, Pb and Zn contents and metal fraction exchangeable to water collected in situ. Sediment elutriates, prepared with water collected from each site, were used to simulate a sediment re-suspension phenomenon. As the characteristics and degree of contamination of sediments may influence system behaviour, salt marshes of two Portuguese estuaries, Cavado (NW coast) and Sado (SW coast), were studied. Cu, Pb and Zn contents higher than ERL (quality guideline, effect range-low) were observed, indicating potential risks for living organisms. Strong Cu-complexing organic ligands, also determined in both water and elutriates, were higher in rhizosediment elutriates, at concentrations similar, or even higher, to those of Cu. Such ligands condition metals speciation in the water column and probably also metal bioavailability. From rhizosediment significant amounts of Cu and Zn were transferred to the aqueous phase, concentrations 2-8 times higher than concentrations present in water. In contrast, elutriates of non-colonized sediment removed metals from water, Cu and Zn levels in elutriates being 2-6 times lower than initial ones. Cd and Pb levels in water and elutriates were not measurable in most cases. Results clearly indicate that metals potential solubility in the rhizosphere of plants was markedly higher than that in the surrounding sediment. The obtained results indicated that H. portulacoides presence (and probably other salt marsh plants) may cause a marked increase in metals concentrations in dissolved phase (pore water or even water column if rhizosediment is re-suspended). As salt marsh plants may be abundant in temperate and subtropical estuaries and costal lagoons, this phenomenon should not be disregard in future studies towards the sustainable management of such environments.  相似文献   

6.
C. Steinberg 《Water research》1980,14(9):1239-1250
By fractioning of dissolved organic carbon (DOC) and of associated metals Na, K, Mg, Ca, Al, Fe, Mn, Ni, Cr, Cu, Pb, Cd, and Zn according to the molecular sizes by means of gel chromatography in several stages, it could be shown that all metals, even the alkaline and alkaline earth metals, are, to a measurable degree, present in chelated form. This type of association covers 97.3% with Pb, 94.6% with Al, 91.5% with Cr, 82.2% with Fe of the total concentrations of each metal mentioned. About 69% of all metal chelates are represented by Mg-compounds. This may be caused by pre-treatment procedures, nevertheless the Mg-concentrations of the different DOC-fractions indicating to be one regulating factor for the uptake of other metals in the studied hard water. The chelated form was also obtained with Mn, Cd, Zn, and Mg, while with Cu, Ni, Na, Ca, and K there is an abundance of ionic forms.The metal distribution within the different molecular size fractions of the DOC proves the existence of specific distribution pattern for Pb and Mn: Pb is preferably chelated by macromolecular substances, whereas Mn combines mainly with minor ones. Cr seems to behave similar as Pb. Regulation' mechanisms for the different metal distribution patterns within the DOC-fractions as well as ecophysiological aspects of the results are discussed.  相似文献   

7.
The concentration of metals, cadmium (Cd), lead (Pb), nickel (Ni), chromium (Cr), copper (Cu), cobalt (Co), iron (Fe), manganese (Mn), and zinc (Zn) was measured in selected samples of honey in Nigeria with a view to providing information on the regional concentration profile of metals in these honeys. The honey samples were digested with a mixture of acids and analysed for metal concentrations using atomic absorption spectrophotometry. The concentrations of metals (mg kg?1) in these honeys ranged from < 0.3 for Cd,<0.50–39.75 for Pb,<0.25–6.98 for Ni,<0.25–55.25 for Cr,<0.25–71.25 for Cu,<0.25–3.50 for Co,<5.0–163.15 for Fe,<11.0–31.75 for Mn and 1.0–31.0 for Zn. The concentrations of metals were relatively high but lower than their respective permissible limits in food except for Pb and Cu in some samples. The regional distribution patterns of metals indicated that honey samples from the Niger Delta region of Nigeria had higher mean concentrations of Ni, Cr, Co, Fe and Zn than honey samples from other regions. The honey samples from the northern region had higher mean concentrations of Pb and Cu.  相似文献   

8.
Concentration of heavy metals (Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, V and Zn) as well as macronutrients (N, P, K, Ca, Mg, S) were measured in water, bottom sediments and plants from anthropogenic lakes in West Poland. The collected plants were: Phragmites australis, Potamogeton natans, Iris pseudoacorus, Juncus effusus, Drepanocladus aduncus, Juncus bulbosus, Phalaris arundinacea, Carex remota and Calamagrostis epigeios. Two reference lakes were sampled for Nymphaea alba, Phragmites australis, Schoenoplectus lacustris, Typha angustifolia and Polygonum hydropiper. These plants contained elevated levels of Cd, Co, Cr, Cu and Mn, and part of the plants contained in addition elevated levels of Mn, Fe, Pb, Ni and Zn. Analyses of water indicated pollution with sulfates, Cd, Co, Ni. Zn, Pb and Cu, and bottom sediments indicated that some of the examined lakes were polluted with Cd, Co and Cr. Strong positive correlations were found between concentrations of Co in water and in plants and between Zn in sediments and plants, indicating the potential of plants for pollution monitoring for this metal. Heavy metal accumulation seemed to be directly associated with the exclusion of Ca and Mg.  相似文献   

9.
Heavy metal content (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) was analysed in the edible parts of two types of horticultural crops (leaf and inflorescence crops) from 30 agricultural fields in Castellón (Spain), a representative area of the European Mediterranean region. Selected soil properties relevant to control the mobility and bioavaibility of heavy metals were analysed for the general characterisation of these agricultural soils. The levels of clay, high percentages of organic matter and the presence of carbonate seem to suggest an important retention of heavy metals by these components in most of these soils. However, the high salinity in some fields (>4 dS/m) seems to facilitate the mobility of some heavy metals (e.g. Cu). The mean values of total contents of heavy metals in soils were similar to values obtained in other works on Spanish agricultural soils. However, there were some fields with a metal content (particularly Cu, Pb or Zn) higher than these works, reflecting an important anthropogenic source. In seven fields, the crop contents of Cd and/or Pb were higher than the maximum levels established by the Commission Regulation no. 466/2001 for horticultural crops. Heavy metal contents in leaf crops were higher than in inflorescence crops, except for Zn. The differences for Cd, Cr, Cu, Fe and Mn contents between these two types of crops were statistically significant. The analysis of crop heavy metal contents showed a higher absorption and/or accumulation of heavy metals in leaf crops than in inflorescence crops. Differences in crop characteristics seem to be responsible for the differential accumulation of heavy metals. Furthermore, agronomic practices and other sources of heavy metals (e.g. atmospheric deposition for Cd and Pb) may also have some influence on crop accumulation. Given the relevance of horticultural crops in the Mediterranean diet, it is highly necessary to extend the experience of this work to other areas of the European Mediterranean region.  相似文献   

10.
Mobile and bound forms of trace metals in sediments of the lower ganges   总被引:2,自引:0,他引:2  
Mobile and bound trace metals associated with sediment components (viz. exchangeable, carbonate, organic, Fe/Mn oxide and residual fractions) were determined at five locations on the River Ganges in the lower reaches. In the exchangeable phase, 5–22% of Pb, 5–14.4% of Cr, 3–16.4% of Cd, 3–16% of Zn and 1–13.5% of Cu were found, and in the carbonate phase 73–87% of Zn, 38–41% of Cd, 13–27% of Ni and 3–10.1% of Pb were found. The Fe/Mn oxide phase retained about 79–83% of Mn, 30–40% of Cr and Fe, 22–25% of Cu, 14–16% of Ni and 9–11% of Pb. In the organic phase about 36–47% of Cd, 22–28% of Cu and 10–15% of Pb were found. The order of release of metals was Cd > Cr > Pb > Cu > Zn > Ni > Mn > Fe, and the order of adsorption characteristics of most of the mobile metal fractions was Fe/Mn oxide > organic > clay. Correlations of the physico-chemical parameters with adsorption characteristics were also determined and a good correlation (r = 0.7) of cation exchange capacity with the clay fraction was found. Igeo (geoaccumulation indices) of metals in the sediments were also evaluated. Results showed a considerable enrichment of trace metals in the sediment phase at almost all the sites.  相似文献   

11.
In the present investigation, the flocculation of dissolved Cd, Cu, Ni, Pb, Mn and Zn with initial concentrations of 1, 2.5 and 5 mg/L in Tadjan River water during mixing with the Caspian Sea water has been studied in order to determine estuarine capacity to remove dissolved metals in the accidental contamination of the river. The flocculation process was investigated on a series of mixtures with salinities ranging from 0.1 to 11 p.p.t. The flocculation rates were indicative of the nonconservative behaviour of Cd, Cu, Ni, Pb, Mn and Zn during estuarine mixing. The order of the final flocculation rate of dissolved metals at 1, 2.5 and 5 mg/L of initial metal concentrations in the river water is as follows:Cu (99%)>Cd (95%)>Zn (88%)>Mn (85%)>Pb (83%)>Ni (73%), Cu(95.6%)>Pb(92.4%)>Cd (90%)>Zn(88.4%)>Mn (81.6%)>Ni(78.8%) and Cd (100%)>Cu(88%)>Ni (85.2%)>Pb (84%)>Zn (83.2%)>Mn (81.2%), respectively. The results also revealed that removal of dissolved metals is not influenced by pH changes and precipitation processes. The flocculation rates revealed that the overall dissolved metal pollution loads may be reduced to about 70% up to about more than 90% during estuarine mixing of Tadjan River with the Caspian Sea water.  相似文献   

12.
The concentrations of Cu, Zn, Fe, Mn, Ni, Cd, Pb and Co have been determined in water, bottom sediments, plankton, zoobenthos and ichthyofauna of mesotropic Lake Piaseczno located in eastern Poland. In water, sediments, plankton and benthos the most abundant heavy metals were Fe, Zn and Mn, whereas in fish Zn, Cu, and Mn were most abundant. The amount of heavy metals in the biotic components was dependent upon their concentration in water and partly upon the concentration in bottom sediments. A considerably less important role in the translocation of heavy metals is probably played by trophic interactions.  相似文献   

13.
Surface sediments of the Guanabara Bay (Rio de Janeiro, Brazil) were analyzed by a sequential extraction procedure for Cd, Cr, Cu, Pb, Zn, Mn and Fe, determining their distribution among five geochemical phases and in the nitric acid extractable phase. Bioavailable phases and non-bioavailable phases have been determined in six transects in the bay to define the significant level of pollution due to sediment metal contamination. A multiple correlation showed limited responsibility of Mn and Fe oxides and humic acids in the adsorption process, which allowed discrimination among the different processes and suggested the strong influence of the hydrogen sulfide present in the highly reduced bay bottom environment. The authors suggest the need to avoid disturbing bottom sediment by dredging or by artificial bottom aeration which could result in a rapid worsening of the environment due to the accelerated formation of more soluble oxygenated metal compounds making the toxic metals much more available to the benthic fauna and to the bay biota in general.  相似文献   

14.
The concentrations of different forms of heavy metals (Fe, Mn, Zn, Cu, Cr, Ni, Cd and Pb) were determined in a mine dump material rich in chalcopyrite. The concentrations were compared with those of the natural vegetation colonising the dump. Samples taken from the dump are acid (pH(H(2)O) between 3.0 and 5.0), have carbon contents lower than 0.5%, N lower than 0.2%, effective cation exchange capacity between 0.74 and 4.96 cmol(+)kg(-1) and percent Al saturation in the exchange complex higher than 20% in 85% of the samples. Iron was the most abundant heavy metal, in both total and bioavailable forms, and the relative abundance of metals was: Fe>Cu>Mn>Zn>Cr. The total Fe concentrations ranged between 4315 and 31578 mg x kg(-1), the total Cu between 273 and 5241 mg x kg(-1), the total Mn between 294 and 2105 mg x kg(-1), the total Zn between 73 and 894 mg x kg(-1) and total Cr between 0.01 and 30 mg x kg(-1). Ni, Cd and Pb were below the analytical detection limits. The concentration of bioavailable Fe ranged between 40 and 1550 mg x kg(-1); Zn was the least abundant metal in this fraction (between 2 and 100 mg x kg(-1)). Copper was the most abundant heavy metal in the exchange complex and in the aqueous extracts, followed by Zn, Mn and Fe. Exchangeable Cu ranged between 17.7 and 1866 mg x kg(-1), whereas the maximum concentrations of exchangeable Zn, Mn and Fe did not exceed 140 mg x kg(-1). The Cu concentration in the aqueous extracts varied between 0.1 and 8.3 mg x l(-1) and the concentration of Fe was always less than 0.52 mg x l(-1). The heavy metal contents in the spontaneously occurring vegetation in the dump ranged between: 150 and 900 mg Fe x kg(-1), 84 and 2069 mg Mn x kg(-1), 20.5 and 106 mg Cu x kg(-1) and between 35 and 717 mg Zn x kg(-1), when considering all the plant samples analysed. Festuca sp. accumulated Fe, Salix atrocinerea accumulated Zn and Mn, and Frangula alnus and Quercus robur accumulated Mn. These native plant species may contribute to decrease the heavy metal contents in the dump material.  相似文献   

15.
The first aim of our study was to determine the concentrations of selected trace elements (Zn, Cu, Fe, Mn, Cd and Pb) in tissues of green turtles from Tortuguero National Park on the North Caribbean coast of Costa Rica and of loggerheads from the Mediterranean Sea. Zn, Cu, Fe, Mn and Cd were present at detectable concentrations in all samples and showed clear organotropism, whereas Pb was not always over the detection limit and did not show any particular tissue distribution. The two species presented significant differences: Cu and Cd in liver and kidney of Chelonia mydas were significantly higher with respect to the concentrations found in Caretta caretta. The second and major goal of our study was to evaluate hepatic and renal metallothionein (MT) as a biomarker of environmental metal exposure. The present paper is the first to describe and quantify MT in kidney and liver of loggerhead turtles and in kidney of green turtles. MT concentrations were higher in green than in loggerhead turtles. In addition, positive correlations were found between Cu and Cd concentrations and Cu-MT and Cd-MT in liver and kidney in both species, suggesting a pivotal role of MT in metal storage and detoxification. The quantification of metals and MT in liver and kidney may be a valid biomarker of metal exposure in the aquatic environment to assess the health of marine sea turtles as long as accurate analytical methods are adopted.  相似文献   

16.
The distribution of 10 trace metals Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn have been determined along the northern section of the Shatt al-Arab River, Iraq. Analyses were carried out, employing a flameless AAS instrument. The mean concentrations of the dissolved species were as follows (expressed in μg l?1): 0.25 Cd, 0.9 Cu, 716 Fe, 1.3 Mn, 0.3 Pb, 0.2 V and 1.8 Zn. Mean concentrations of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn in the particulate matter were 55.2, 6.0, 188, 77, 31 472, 1731, 3807, 93, 207 and 77 μg g?1 respectively. In the exchangeable fraction of the sediment were 0.15, 5.5, 11.1, 11.9, 1625, 482, 42, 30.5, 25.7 and 6 μg g?1, whereas in the residual were 0.025, 11.5, 96.1, 22, 5176, 258, 613, 3.9, 162 and 56.8 μg g?1 respectively. Thus, the exchangeable trace metals represent the following mean percentage of the total; 75% Cd, 33% Co, 10% Cr, 34% Cu, 24% Fe, 63% Mn, 7% Ni, 74% Pb, 14% V and 23% Zn. The concentration of Ni and V were relatively high, this was attributed to the petroleum-rich deposits of the region. The concentrations observed for other metals were lower or equal to those reported for control sites except for Pb which was slightly higher. The data obtained were subjected to simple linear regression analysis and expressed in the form of correlation coefficients. It was found that the inter-elemental relationships are rather complex.  相似文献   

17.
The availability and bioaccumulation of metals and metalloids, and the geochemical interactions among them, are essential to developing an ecological risk assessment (ERA) framework and determining threshold concentrations for these elements. The purpose of this study was to explore the relationships among total recoverable and reactive metals and metalloid in sediment and their bioaccumulation by chironomids. In the fall of 2004 and 2005, 58 stations located in the three fluvial lakes of the St. Lawrence River and its largest harbour area in Montreal, Canada, were sampled. Nine total recoverable and reactive metals (Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) and one metalloid (As) were measured in whole sediment using two extraction methods: HCl/HNO(3) and HCl 1N, respectively. The bioaccumulation of six metals (Cd, Cr, Cu, Ni, Pb and Zn) and As by chironomids was evaluated in a subset of 22 stations. Strong collinearities were observed between some total recoverable or reactive metal concentrations in sediment; two principal clusters, including collinear metals, were obtained. The first one included metals of mainly geological origin (Al, Cr, Fe, Mn, Ni), while the second one included As, Cd, Cu, Pb and Zn, which likely derive mainly from point sources of anthropogenic contamination. Each element also showed strong collinearity between their total recoverable and reactive forms (0.65< or =r < or =0.97). We can conclude that both chemical forms are equivalent for use in statistical models needed to explain biological responses and also in screening risk assessment. However, these relationships are not always proportional. Lower availability percentages were observed for Cd, Cu and Zn in the highly mixed-contaminated area of the Montreal Harbour, even though concentrations in sediment were higher. We observed a significant correlation (0.50< or =r < or =0.56) between concentrations in chironomids and concentrations of both total recoverable and reactive Cr and Pb in sediment. Arsenic was an exception, with accumulation by chironomids being highly related to reactive sediment concentrations. Finally, we observed variable influences of explanatory factors (e.g. sediment grain size, Al, Fe, Mn, S, TOC), depending on which metal or metalloid was being predicted in chironomids. In this context, it is difficult to choose a universal predictive method to explain the bioaccumulation of specific metals, and more research is still needed into normalization procedures that consider a combination of explanatory factors.  相似文献   

18.
The partitioning of particulate trace metals was investigated during one year of monthly sampling of suspended particulate matter (SPM) at eight sites along the Lot-Garonne fluvial system, known for its polymetallic pollution. The chemical partitioning in five operationally defined fractions (exchangeable/carbonate, Fe/Mn oxides, organic matter/sulfides, acid soluble, residual) was determined using a multiple single extraction approach. This approach showed that Cd, Zn, Pb and Cu were mainly associated with acid soluble phases (84-95%, 65-88%, 61-82% and 55-80% of the respective total metal content), and therefore showed a high mean potential of mobilization and bioavailability. In the Riou-Mort River, draining the smelting-wastes, Zn, Cd and Mn showed high mobility as they were little associated with the residual fraction (1-2%) and mainly bound to the 'exchangeable' fraction of SPM (60-80%), probably weakly adsorbed on amorphous freshly-precipitated sulfide and/or oxide phases. Upstream and downstream of the anthropogenic source of metallic pollution, Mn and Cd, and Zn to a lesser extent, remained highly reactive. The other trace metals were mainly associated with the residual fraction and thus less mobile. However, the multiple single extraction scheme revealed that the most reactive transport phases were non-selectively extracted by the conventional extractants used here. These selectivity problems could not have been observed if sequential extraction was used.  相似文献   

19.
To obtain information on the fate of trace metals discharged to an estuarine environment, analyses have been made on water and sediment samples from Back River, MD., and on effluent from the large wastewater treatment plant that discharges there. Within 2–3 km of the outfall, the concentration (in μg 1−1) of all metals decreases as follows: Mn, > 120-90; Fe, > 570-300; Cu, 53-7; Zn, 280-9; Cd, 3.5-0.5 and Pb, 31-<4. Except possibly for Mn and Fe, these decreases are much greater than can be ascribed to simple dilution, so physical, chemical or biological processes must be removing metals to the sediments. Correspondingly, sediment concentrations of Cu, Zn, Cd and Pb are approximately one order of magnitude higher than normally found in uncontaminated areas. After the initial decrease, concentrations of Mn and Cd in the water begin to rise again, suggesting remobilization from the sediments. Comparison of the estimated annual discharge of 8 trace metals to the Chesapeake Bay from wastewater treatment plants and from rivers suggests that the wastewater input may be within one order of magnitude of the fluvial input for Cr, Cu, Zn, Cd and Pb. Of the metals studied, Cd presents the greatest potential for serious pollution because its input from wastewater probably exceeds fluvial input, it appears to be readily remobilized from sediments, and it is known to be toxic to many organisms.  相似文献   

20.
Concentrations of Fe, Mn, Cd, Co, Ni, Pb, and Zn were determined in pore water and sediment of a coastal fresh water lake (Haringvliet Lake, The Netherlands). Elevated sediment trace metal concentrations reflect anthropogenic inputs from the Rhine and Meuse Rivers. Pore water and sediment analyses, together with thermodynamic calculations, indicate a shift in trace metal speciation from oxide-bound to sulfide-bound over the upper 20 cm of the sediment. Concentrations of reducible Fe and Mn decline with increasing depth, but do not reach zero values at 20 cm depth. The reducible phases are relatively more important for the binding of Co, Ni, and Zn than for Pb and Cd. Pore waters exhibit supersaturation with respect to Zn, Pb, Co, and Cd monosulfides, while significant fractions of Ni and Co are bound to pyrite. A multi-component, diagenetic model developed for organic matter degradation was expanded to include Zn and Ni dynamics. Pore water transport of trace metals is primarily diffusive, with a lesser contribution of bioirrigation. Reactions affecting trace metal mobility near the sediment-water interface, especially sulfide oxidation and sorption to newly formed oxides, strongly influence the modeled estimates of the diffusive effluxes to the overlying water. Model results imply less efficient sediment retention of Ni than Zn. Sensitivity analyses show that increased bioturbation and sulfate availability, which are expected upon restoration of estuarine conditions in the lake, should increase the sulfide bound fractions of Zn and Ni in the sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号