首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new near infrared (NIR) fluorescent 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dye with dual functionality was synthesized and characterized. The compound 1 responds to copper ion in NIR region with high selectivity through a photo-induced electron transfer process established between the substituted benzene group in the meso position and the BODIPY core when Cu2+ binds with the four oxygen atoms in the structure, and results in the quenching of the fluorescence. The response range to copper ions was from 10 to 50 μM, and other metal ions including Li+, Na+, K+, Mg2+, Ca2+, Pb2+, Fe3+, Ag+, Hg2+, Co2+, Zn2+, Mn2+, Cd2+, Ni2+ and Al3+ had no interference. When excited at 520 nm, a new emission peak at 568 nm of compound 1 was used to detect Al3+ selectively from 30 μM to 110 μM without any interference from other metal ions including copper ions.  相似文献   

2.
A novel Ni2+ optode was prepared by covalent immobilization of thionine, 3,7-diamine-5-phenothiazoniom thionineacetate, in a transparent agarose membrane. Influences of various experimental parameters on Ni2+ sensing, including the reaction time, the solution pH and the concentration of reagents were investigated. Under the optimized conditions, a linear response was obtained for Ni2+ concentrations ranging from 1.00 × 10−10 to 1.00 × 10−7 mol l−1 with an R2 value of 0.9985. The detection limit (3σ) of the method for Ni2+ was 9.30 × 10−11 mol l−1. The influence of several potentially interfering ions such as Ag+, Hg2+, Cd2+, Zn2+, Pb2+, Cu2+, Mn2+, Co3+, Cr3+, Al3+ and Fe3+ on the determination of Ni2+ was studied and no significant interference was observed. The membrane showed a good durability and short response time with no evidence of reagent leaching. The membrane was successfully applied for the determination of Ni2+ in environmental water samples.  相似文献   

3.
A new triphenylamine-based fluorogenic probe bearing an indolylmethane unit (R1) was developed as a fluorescent chemosensor with high selectivity toward Cu2+ over other cations tested. The new probe R1 only sensed Cu2+ among heavy and transition metal (HTM) ions in CH3CN/H2O (70/30, v/v) solution. The capture of Cu2+ by the receptor resulted in deprotonation of the secondary amine conjugated to the triphenylamine, so that the electron-donation ability of the “N” atom would be greatly enhanced; thus sensor showed a 250 nm change in the new absorption band (from 291 nm to 541 nm) and a large colorimetric response, it also exhibited the large decrease in fluorescence intensity at 378 nm and affinity to Cu2+ over other cations such as Hg2+, Fe3+, Pb2+, Zn2+, Cd2+, Ni2+, Co2+ and Mn2+ make this compound a useful chemosensor for Cu2+ detection in CH3CN/H2O (70/30, v/v) mixture. The probe R1 (c = 1.0 × 10−6 M) displayed significant fluorescence change and colorimetric change upon addition of Cu2+ among the metal ions examined.  相似文献   

4.
Ca (or Sr)TiO3:Eu3+, M (Li+ or Na+ or K+) and CaTiO3:Pr3+, M (Li+ or Na+ or Ag+ or K+ or Gd3+ or La3+) powders were prepared by combustion synthesis method and the samples were further heated to ~1000 °C to improve the crystallinity. The structure and morphology of materials were examined by X-ray diffraction (XRD) and a scanning electron microscopy (SEM). The morphologies of SrTiO3:Eu3+, CaTiO3:Eu3+ or CaTiO3:Pr3+ powders co-doped with other metal ions were very similar. Small and coagulated particles of nearly cubical shapes with small size distribution having smooth and regular surface were formed. Photo-luminescence spectra of CaTiO3:Pr3+ and co-doped either with Li+, Na+, K+, Ag+, La3+ or Gd3+ ions showed red emissions at 613 nm due to the 1D2  3H4 transition of Pr3+. The variation of intensity of emission peak with different co-doping follows the order: K+ > Ag+ > Na+ > Li+ > La3+ > Gd3+. The characteristic emissions of CaTiO3:Eu3+ lattices had strong emission at 614 and 620 nm for 5D0  7F2 with other weak transitions observed at 580, 592, 654, 705 nm for 5D0  7Fn transitions where n = 0, 1, 3, 4 respectively in all host lattices. Photoluminescence intensity in SrTiO3:Eu3+ is more than CaTiO3:Eu3+ lattices. A remarkable increase of photoluminescence intensity (in 5D0  7F2 transition) was observed if co-doped with Li+ ions in CaTiO3:Eu3+ and SrTiO3:Eu3+.  相似文献   

5.
In this paper, we presented a carbon tetrachloride gas sensor with strong cataluminescence response based on Ag2Se nanomaterial, which was synthesized via the electrodeposition on the surface of Al foil by directly using a non-aqueous dimethyl sulfoxide (DMSO) solution with CH3COOAg and SeCl4. The deposited Ag2Se material was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Then, the prepared Ag2Se material along with the Al foil substrate was employed to design the carbon tetrachloride gas sensor. Under the optimized conditions, the present gas sensor exhibited a broad linear range of 0.9-228 μg mL−1, with a limit of detection of 0.3 μg mL−1 (S/N = 3). The proposed gas sensor showed good characteristics with high selectivity, fast response and long lifetime.  相似文献   

6.
Using per-6-ammonium-β-cyclodextrin (per-6-NH3+-β-CD) as an anion binding site and p-nitrophenol as a spectroscopic probe, a colorimetric sensor is developed for phosphate and pyrophosphate anions in water. Per-6-NH3+-β-CD forms a 1:2 inclusion complex with p-nitrophenol as characterized by NOESY and ESI-MS spectra and it undergoes a distinct color change from colorless to intense yellow upon exposure to phosphate or pyrophosphate anions over other anions including perchlorate, ATP2−, ADP2− and AMP2−. The seven ammonium groups of 1, bind phosphate (characterized by ESI-MS) or pyrophosphate anions specifically by electrostatic interaction. This naked eye sensing is significant for very low concentration (5 × 10−5 M) of anion with 1:2 ratio of host and guest.  相似文献   

7.
The dissolved oxygen (DO) sensing electrode (SE) concept utilizing sub-micron-sized ruthenium oxide (RuO2), doped with other nanostructured oxides, has been extended to investigate the possibility of employing copper (II) oxide (Cu2O) as a dopant in order to improve sensor's characteristics and meet long term antifouling needs for SEs. In this work, a thin-film SE made of RuO2 was constructed on the alumina sensor substrate, and a range of dopants and their concentrations was added to it in order to optimize SE properties. The Cu2O-doped RuO2 SE had shown a linear response to DO between 0.5 and 8.0 ppm at various temperatures, with two sensitivity maxima of 47.4 and 46.0 mV per decade for Cu2O concentrations of 10 and 20 mol%, respectively. The maximum sensitivity for Cu0.4Ru3.4O7 + RuO2-SE was obtained at a dopant concentration of 10%. Selectivity measurements revealed that the presence of Ca2+, Mg2+, Li+, Na+, NO3−, PO43−, SO42−, F, K+ and Cl in the solution had no significant effect on the sensor's emf. The sensor allows overcoming the problem of an insufficient selectivity of semiconductor-based water sensors. It was also found that the doping of RuO2-SE by Cu2O allowed it to function at full capacity in a natural outdoor water body with no obvious effects of biofouling.  相似文献   

8.
A novel toxicity detection methodology based on sulfur-oxidizing bacteria (SOB) has been developed for the rapid and reliable detection of toxic chemicals in water. The methodology exploits the ability of SOB to oxidize sulfur particles in the presence of oxygen to produce sulfuric acid according to the following equation: S + H2O + 1.5O2 → SO42− + 2H+, ΔG°′ = −587.1 kJ/reaction. The reaction results in an increase in electrical conductivity (EC) and a decrease in pH as SOB convert insoluble sulfur particles to sulfate and protons. The proposed technique is validated using EC and pH data. Using a synthetic stream water (EC = 0.12 mS/cm and pH 7.2), the baseline steady-state EC and pH values were ∼1.0 mS/cm and ∼2.5 over 30 days of testing when hexavalent chromium (Cr6+) was not added to the system. When Cr6+ was added to the system, the effluent EC decreased and the pH increased due to inhibition of SOB. We found that the system can detect Cr6+ at a concentration of 5 ppb which is lower than any method to date.  相似文献   

9.
Zr4+- and Eu3+-codoped SrMg2(PO4)2 phosphors were prepared by conventional solid-state reaction. Under the excitation of ultraviolet light, the emission spectra of Sr0.95Eu0.05Mg2−2xZr2xP2O8 (x = 0.0005-0.07) are composed of a broad emission band peaking at 500 nm from Zr4+-emission and the characteristic emission lines from the 5D0 → 7FJ (J = 0, 1, 2, 3 and 4) transitions of Eu3+ ions. These phosphors show the long-lasting phosphorescence. The emission color varies from red to white with increasing Zr4+-content. The white-light emission is realized in single-phase phosphor of Sr0.95Eu0.05Mg2−2xZr2xP2O8 (x = 0.07) by combining the Zr4+- and Eu3+-emission. The duration of the persistent luminescence of Sr0.95Eu0.05Mg2−2xZr2xP2O8 (x = 0.07) reaches nearly 1.5 h. The time at which the long-lasting phosphorescence intensity is 50% of its original value (T0.5) is 410 s. The afterglow decay curves and the thermoluminescence spectra were measured to discuss this long-lasting phosphorescence phenomenon. The co-doped Zr4+ ions act as both the luminescence centers and trap-creating ions.  相似文献   

10.
A new acridine fluoroionophore containing two diethanolamine ligands, 4,5-bis(N,N-di (2-hydroxyethyl)iminomethyl)acridine (BHIA), was designed and synthesized based on the fluorophore-spacer-receptor format. And its fluorescent sensing behavior towards metal ions was investigated in buffered aqueous media. The presence of Cd2+ induces the formation of a 1:1 ligand/metal complex at neutral pH, which exhibits enhanced emission at 454 nm. The fluorescence intensity is linear with the Cd2+ concentration in the range of 1.0 × 10−6 to 3.0 × 10−5 M (R = 0.9967). Experimental results show a low interference response towards other metal ions. The selective switch-on fluorescence response of BHIA to Cd2+ makes it suitable for sensing of Cd2+ in aqueous solution. The detection limit is 1.3 × 10−7 M. Moreover, the results indicated that BHIA was a reversible chemosensor for Cd2+, which makes it attractive for sensing applications.  相似文献   

11.
Pure diamond-like carbon (DLC) thin films and boron-doped DLC thin films have been deposited on silicon substrates using femtosecond pulsed laser. The amorphous carbon materials (DLC), have been deposited at room temperature by ablating graphite targets with an amplified Ti:sapphire laser of 800 nm wavelength and a pulse duration of 150 fs in high vacuum conditions. Doping with boron has been performed by ablating alternatively graphite and boron targets.In this study, the DLC films were used as working electrodes for the electrochemical detection of trace heavy metals namely, Cd2+, Pb2+, Ni2+ and Hg2+, by using square wave anodic stripping voltammetry (SWASV) technique. Four metals were detected at −1.3 V deposition potential, and 90 s deposition time. The DLC films have been characterized by multiwavelength Raman spectrometry and high resolution scanning electron microscopy. The effect of the boron doping on the electrochemical behavior has been shown. The a-C:B 8%/Si3N4 electrode gives the more sensitive detection. The four metals are detected simultaneously with a detection limit of 1 μg/L or 2 μg/L and a dynamic range from 1 or 2 to 25 μg/L for every metal, as presented in third table of this article. The different sensitivities obtained are 6.2, 20.0, 1.2 and 6.6 μA/ppb or μA μg−1 L for Cd2+, Pb2+, Ni2+ and Hg2+, respectively.  相似文献   

12.
CaMoO4:RE3+,Yb3+ (RE = Er, Ho, Tm) phosphors were successfully synthesized by a facile hydrothermal method. XRD patterns confirmed tetragonal structure under different RE3+ and M+ ions doping conditions. Particles shapes and sizes were confirmed by SEM and TEM analyses. Particles shape and size were well tuned by control of solution pH; spherical balls consisting of nano-grains at low pH of ∼2, rice grain shapes at moderate pH of ∼6, and thin flakes at higher pH of ∼12, were observed. Fine tunability of upconversion (UC) emission color was achieved by doping multiple RE3+ ions within a single CaMoO4 host. Blue, green and orange upconverted emission were observed by doping Tm3+, Er3+ and Ho3+ in the CaMoO4, respectively. Further, the emission colors were well tuned by the combination of Tm, Er and Ho ions and their concentrations. CaMoO4:Tm3+,Ho3+,Yb3+ exhibited perfect white emission with well tunability from cool white to warm white colors. Substitution of part of Ca ions by M+ (M = Li, Na, K, Rb) ions affected the crystal field symmetry around RE3+ ions and hence changed the transition probabilities between their f–f transition levels, consequently intensified the UC intensities. The blue (Tm3+), green (Er3+), and orange (Ho3+) upconversion intensities of CaMoO4:RE3+,Yb3+,0.10 K+ phosphors increased by 60, 50 and 40 folds compared to the unsubstituted analogues, respectively. The K substituted CaMoO4:RE3+,Yb3+,K+ phosphors exhibited intense UC emissions visible by naked eye even pumped by less than 1 mW laser power and can have potential application in displays and variety of other applications.  相似文献   

13.
This work describes the preparation of a novel pyrazoline compound and the properties of its UV-vis absorption and fluorescence emission. Moreover, this compound can be used to determine Zn2+ ion with high selectivity and a low detection limit in the HEPES (20 mM HEPES, pH = 7.2, 50% (v/v) CH3CN) buffer solution. This sensor forms a 1:1 complex with Zn2+ and shows a fluorescent enhancement by chelation enhanced fluorescence effect with good tolerance of other metal ions. In addition, this sensor is very sensitive with fluorometric detection limit of 0.12 μM.  相似文献   

14.
This communication reports the use of glutathione mediated self assembled chains of gold nanorods as new approach for the detection of Pb2+ ions. We were prompted to study the influence of metal ions by considering the role of glutathione as detoxification agent in the body. Additionally the ability of glutathione to complex with metal ions like lead (Pb2+) and mercury (Hg2+) is well known. We studied the interaction of different metal ions including Pb2+ with the end to end assembled chains of gold nanorods. Pb2+ was found to disassemble the chains to dimeric structures. High resolution transmission electron microscopy and dynamic light scattering were used to study the ensemble. A proportional reduction in the size of the assembly was observed between concentration ranges of 0.1-0.025 mM of Pb2+. Our results indicate that analyte induced disassembly is an attractive approach to the detection of environmentally relevant components such as Pb2+.  相似文献   

15.
An iodide-sensing, colormetric and selective fluorescent sensor N2,N6-bis(2-(p-nitro-benzamido)ethyl)pyridine-2,6-dicarboxamide, BBPCA, was reported. The recognition properties of BBPCA toward various anions were evaluated in THF/H2O (4/1, v/v) solution by fluorescence emission and UV-vis absorption spectra. The results showed the BBPCA can be used to detect iodide ion based on intermolecular charge transfer (ICT) and heary atom quenching mechanism. The color changes of BBPCA solution from colorless to yellow and a red-shift in the absorption and emission spectra can be observed by adding iodide ions. But it showed no significant changes on the addition of other anions such as F, Cl, Br, HCO3, NO3, CO32−.  相似文献   

16.
The Ho3+ and Pr3+ ions co-doped phosphate glasses were prepared by melt quenching procedure with the various composition of (70-x-y)P2O5 + 20SiO2 + 10CaO + xHo2O3 + yPr2O3 (x = 0.4, 0.6, 0.8, 1.0 mol%, y = 0.6, 0.8, 1.0 mol%). The structural investigation (based on X-ray diffraction analysis) confirmed amorphous character of these glass materials. The optical properties were studied. The glass samples have strong absorption at 360 nm, and the excitation light at 360 nm can excite Ho3+ and Pr3+ ions very well, causing them to produce synergistic luminescence. The glass sample 68.8P2O5 + 20SiO2 + 10CaO + 0.4Ho2O3 + 0.8Pr2O3 emits strong white light under 360 nm excitation. The chromaticity coordinate values are x = 0.3378, y = 0.3472 in white light region, and it has a moderate correlated color temperature (CCT) of 5277 K. Decay time data reveals that there is energy transfer from Pr3+ to Ho3+ ions. This glass will be a good material for white light and tunable light emitting.  相似文献   

17.
Dario Bini 《Calcolo》1985,22(1):209-228
The tensor rankA of the linear spaceA generated by the set of linearly independent matricesA 1, A2, …, Ap, is the least integert for wich there existt diadsu (r) v (r)τ, τ=1,2,...,t, such that . IfA=n+k,k≪n then some computational problems concerning matricesAA can be solyed fast. For example the parallel inversion of almost any nonsingular matrixAA costs 3 logn+0(log2 k) steps with max(n 2+p (n+k), k2 n+nk) processors, the evaluation of the determinant ofA can be performed by a parallel algorithm in logp+logn+0 (log2 k) parallel steps and by a sequential algorithm inn(1+k 2)+p (n+k)+0 (k 3) multiplications. Analogous results hold to accomplish one step of bisection method, Newton's iterations method and shifted inverse power method applied toA−λB in order to compute the (generalized) eigenvalues provided thatA, BA. The same results hold if tensor rank is replaced by border rank. Applications to the case of banded Toeplitz matrices are shown. Dedicated to Professor S. Faedo on his 70th birthday Part of the results of this paper has been presented at the Oberwolfach Conference on Komplexitatstheorie, November 1983  相似文献   

18.
Based on the protection reaction between ethanethiol and aldehyde, a novel fluorescent probe (2) for Hg2+ ions, with the simplest structure reported so far, was designed, which displayed high sensitivity and selectivity towards Hg2+ and Ag+ over other metal ions with detectable fluorescent signals, due to distinct deprotection reaction of dithioacetal. Compound 2 was further utilized to construct the chemical reaction-based conjugated polymer probes (P2 and P4) for Hg2+ ions. More importantly, the effect of the molecular weight of conjugated polymers on the sensitivity of the probes towards Hg2+ ions was carefully studied.  相似文献   

19.
This work reports on the Cu2+ chemosensing behaviour of self-organized micro-array structures of a novel donor-acceptor bichromophoric compound anchored onto Ag nanoisland films. The system exhibits quenching of the fluorescence in the presence of Cu2+ ions, with detection range extending from 2 × 10−8 M up to 3 × 10−6 M and limit of detection (LOD) of 8 × 10−9 M. The quenching of fluorescence is accompanied by a quenching of SERS signal from the metal-organic structure, which is consistent with an electron transfer between the copper cation and the organic moiety. The self-organization property of the sensing complexes into micrometric arrays offers great potential for miniaturization and future development of Cu2+ detection systems based on real-time observation of fluorescence or SERS quenching by fluorescence microscopy or microRaman spectroscopy.  相似文献   

20.
We report two fluorescent Zn2+ sensors, AD1 and AD2. In aqueous solution, upon addition of Zn2+, AD1 only showed the enhancement on the fluorescence intensity, while AD2, acting as a ratiometric sensor, demonstrated the variations not only on the fluorescence intensity but also on the emission wavelengths. Both sensors exhibit high sensitivity (nM level) and selectivity for Zn2+ over Na+, K+, Mg2+, and Ca2+ at the millimolar level. Moreover, AD2 undergoes significant increase of the TPA cross sections (δmax) at 840 nm by the Zn2+-coordination induced ICT enhancement. The laser scanning confocal microscopy experiments revealed that AD2 is cell-permeable and can indeed visualize the changes of intracellular Zn2+ in living cells through a ratiometric approach by utilizing two-photon excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号