首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Electrospray (ES) mass spectrometry has been used to analyse preparations of porcine pulmonary surfactant polypeptide-C (SP-C). A number of variant forms of the native 35-residue dipalmitoylated peptide were detected including (a) C-terminally methylated SP-C, (b) C-terminally methylated and methionine oxidized SP-C, (c) N-terminally truncated, C-terminally methylated and methionine oxidized SP-c, (d) C-terminally elongated, C-terminally methylated and methionine oxidized SP-C, and (e) tripalmitoylated, C-terminally methylated and methionine oxidized SP-C. C-terminal methylation and methionine oxidation are probably a consequence of the sample handling procedure. The occurrence of the C-terminally elongated form of SP-C has implications for the in vivo processing of proSP-C and the Tandem mass spectrometry (MS/MS) was used to confirm the amino acid sequence of SP-C and the presence of palmitoyl groups covalently linked to the peptide. Some of the structures of the variant forms of SP-C were determined by MS/MS.  相似文献   

3.
BACKGROUND: There are disparate reports concerning the presence of surfactant proteins in the airways of lung. The recent finding of SP-A in tracheobronchial epithelium and submucosal glands in lungs from second trimester humans has renewed interest in potential new functions of surfactant in lung biology. METHODS: In situ hybridization studies were done to determine the distribution of SP-A, SP-B, and SP-C in baboon lung specimens from 60, 90, 120, 140, 160, and 180 (term) days of gestation and adults. Lungs from gestation controls were obtained at the time of hysterotomy and adult lungs at necropsy. Riboprobes used for in situ hybridization contained the entire coding regions for human SP-A, SP-B, and SP-C. RESULTS: At 60 days, SP-C mRNA expression was evident in focal portions of primitive tubular epithelium but not bronchi. This distal pattern of SP-C mRNA expression persisted and was present in some epithelial cells of respiratory bronchioles at term. At 90 days, SP-A mRNA expression was present in the epithelium of trachea and large bronchi. SP-B mRNA expression was found in small bronchi, bronchioles, and distal tubular epithelium at 120 days of gestation. SP-A mRNA bronchiolar localization became evident at 140 days of gestation and alveolar type 2 cellular expression at 160 days of gestation. Abrupt transitions of surfactant protein expression were identified (e.g., SP-A mRNA-positive cells in the epithelium of large bronchi with adjoining SP-B mRNA expression in small bronchi and bronchioles). CONCLUSIONS: Findings in the baboon indicate that there are well-delineated sites of surfactant protein mRNA expression in bronchial and bronchiolar epithelia. mRNA expressions of SP-A and SP-B are present in both bronchial and bronchiolar epithelium but at different sites, whereas SP-C expression is seen in loci of epithelial cells in respiratory bronchioles.  相似文献   

4.
Antenatal administration of triiodo-L-thyronine (T3) to late gestation rats resulted in decreased lung antioxidant enzyme (AOE) activity but increased surfactant phospholipids. In fetal rat lung explant cultures, T3 decreased the expression of surfactant proteins (SP) A and B. There have been no reported studies of the simultaneous in vivo developmental influence of T3 on both pulmonary AOE and SP gene expression. We hypothesized that antenatal T3 treatment would cause differential regulation of surfactant phospholipid, SP, and AOE genes in the late gestation fetal rat. Timed pregnant rats received intramuscular injections of either T3 (7 mg/kg) or placebo on days 19 and 20 of gestation and fetuses were delivered on day 21. Fetal lung SP-A, SP-B, SP-C, and AOE mRNA levels were studied by Northern analysis. AOE mRNA levels were further quantitated by solution hybridization. Total lung phospholipids (TPL) and disaturated phosphatidylcholine (DSPC) content were quantitated by a phosphorus assay. T3 significantly increased TPL and DSPC content, and significantly decreased the expression of SP-A, SP-C, CuZnSOD, and catalase genes. Because of a crucial interplay of these factors for normal lung function at the time of birth, the molecular mechanisms by which these apparently opposing changes are accomplished warrant further investigation.  相似文献   

5.
Explants of embryonic lung are often used to characterize lung growth, bronchial tree pattern, and cell differentiation. Most investigators culture lungs for 3-7 days in defined media lacking, e.g., added growth factors or hormones. If growth and differentiation are comparable to that in vivo, these cultures show considerable promise for identifying developmental regulatory molecules and target genes, and for elucidating molecular responses. We used in situ hybridization and RT-PCR to compare times and sites of expression of mRNAs of six epithelial genes in cultured and uncultured fetal rat lungs. These genes, expressed in distal lung of adult rats, are surfactant proteins (SP) A, B, and C; LAR, a receptor-type tyrosine phosphatase; Clara cell secretory protein (CC10, CCSP); and T1alpha. SP-A, SF-B, LAR, and CC10 are expressed by both Clara and Type II cells in adult animals. SP-C and T1alpha are unique markers for Type II and Type I cells, respectively. SP-C, LAR, and T1alpha are expressed before the lung is explanted (Day 13.5); SP-A, -B, and CC10 mRNAs are first detected later. The onset of expression is similar in vivo and in vitro. Although the patterns of expression differ for each mRNA, their sites of expression in culture match those in vivo relative to the bronchial tree. The explanted embryonic lung appears to be an excellent experimental model.  相似文献   

6.
7.
8.
Neonatal respiratory function depends on the development of a well-formed pulmonary capillary bed. Vascular endothelial growth factor (VEGF) is a potent inducer of endothelial cell growth and angiogenesis. High levels of VEGF protein and messenger RNA (mRNA) have been detected in the developing lung, suggesting that VEGF plays a role in the development of the pulmonary capillary bed. To begin to understand the role of VEGF in human lung development, we explored the regulation of VEGF gene expression and the localization of VEGF protein and mRNA in a model of the developing human lung. VEGF protein and mRNA were detected in midtrimester human fetal lung tissue, and their levels increased with time in explant culture. VEGF protein and mRNA were increased by the maintenance of human fetal lung explants in 2% O2 environments compared with 20% O2 environments. VEGF mRNA levels were found to be increased by cyclic adenosine monophosphate (cAMP) in explants that were incubated in 20% O2, but not in those incubated in 2% O2. Immunostaining for VEGF protein demonstrated localization primarily in airway epithelial cells in midtrimester human fetal lung tissue. Immunostaining for VEGF increased with incubation of human fetal lung explants in 2% and 20% O2. Interestingly, VEGF protein was localized primarily in the basement membrane subjacent to airway epithelial cells after 4 d of incubation in 20% O2. Incubation of tissues in the presence of dibutyryl cAMP resulted in an increase in immunostaining for VEGF, primarily in the basement membranes of prealveolar ducts in 20% O2-treated tissues. In situ hybridization studies indicated that VEGF mRNA was present in both mesenchymal cells and airway epithelial cells. These data suggest that VEGF gene expression is regulated by both oxygen and cAMP in the developing human lung. The detection of VEGF mRNA and protein in distal airway epithelial cells and the detection of VEGF protein in the basement membrane subjacent to the airway epithelial cells suggest that translocation of VEGF protein occurs after its synthesis in the epithelium. Localization of VEGF to the basement membrane of airway epithelial cells may be important for directing capillary development in the human lung.  相似文献   

9.
10.
Surfactant protein C (SP-C) is synthesized in the alveolar type II cells of the lung as a 21 kDa propeptide which is proteolytically processed to a 4.2 kDa mature active form. The main function of this extremely hydrophobic protein is to enhance lipid insertion into the air/liquid interface in the lung upon inhalation. This is necessary to maintain a relatively low surface tension at this interface during breathing. In this report we describe the production of mature human SP-C in the baculovirus expression system. The recombinant protein contains a secondary structure with a high alpha-helical content (73%), comparable to native SP-C, as determined by circular dichroism and attenuated total reflection Fourier transform infrared analysis. The expressed protein is a mixture of dipalmitoylated (15%) and non-palmitoylated SP-C. This suggests that the information required for palmitoylation is contained within the sequence of the mature protein. The activity of the protein to insert phospholipids into a preformed monolayer of lipids at an air/liquid interface was determined with a captive bubble surfactometer. Recombinant SP-C significantly reduced the surface tension at the air/liquid interface during dynamic expansion and compression. We conclude that correctly folded, dipalmitoylated and active SP-C can be expressed in the baculovirus expression system. Our results may facilitate investigations into the relation between structure and function of SP-C and into protein palmitoylation in general.  相似文献   

11.
The hydrophobic surfactant proteins, SP-B and SP-C, serve important roles in surfactant function and metabolism. Both proteins are encoded by single genes, located on human chromosomes 2 and 8 respectively, which have been characterized and extensively studied. Mutations in the SP-B gene have been shown to cause severe lung disease, and polymorphisms in the SP-B gene may be associated with the development of RDS in premature infants. In contrast, mutations in the SP-C gene have not yet been identified or shown to cause lung disease, although given the apparent importance of SP-C in surfactant function, this remains a possibility.  相似文献   

12.
PTH-related protein (PTHrP) is found with its receptor in a variety of normal mammalian embryonic tissues where it apparently regulates cellular growth and differentiation. PTHrP stimulates phosphatidylcholine synthesis in rat fetal lung explants, suggesting a role in fetal type II alveolar maturation and surfactant production. We investigated PTHrP levels in tracheal aspirates of newborn infants. We collected tracheal aspirates from 40 intubated newborn infants within the first 24 h of life. PTHrP levels were measured by a RIA using rabbit antisera to PTHrP peptide 38-64. We found significantly lower PTHrP levels in tracheal aspirates from infants born at less than 35 wk of gestation (p = 0.02) and with a birth weight less than 2 kg (p = 0.04). We also found significantly lower PTHrP levels in male preterm (<35 wk of gestation) infants compared with female infants (p = 0.01), and in preterm infants who required multiple doses of surfactant (p = 0.005). Preterm infants exposed to antenatal steroids had significantly higher levels of PTHrP in tracheal aspirates (p = 0.02). PTHrP is associated with various indices of lung maturation and may prove to be a mediator of differentiation and growth.  相似文献   

13.
Pulmonary surfactant-specific protein, SP-C, isolated from porcine lung lavage, has been deacylated to investigate the role of the two thioester linked palmitoyl chains located near the N-terminus. Surface thermodynamic properties, secondary structure, and orientation of native and deacylated SP-C in 1, 2-dipalmitoylphosphatidylcholine (DPPC) monolayers has been characterized by combined surface pressure-molecular area (pi-A) isotherms and infrared reflection-absorption spectroscopy (IRRAS) measurements. The isotherms indicate that deacylation of SP-C produces more fluid monolayers at pressures less than 30 mN m-1. The helical secondary structure and tilt angle (70-80 degrees relative to the surface normal) of SP-C remained essentially unchanged upon deacylation in DPPC monolayers at a surface pressure approximately 30 mN m-1. The results are consistent with a model that acylation of SP-C may influence the rapid protein-aided spreading of a surface-associated surfactant reservoir, but not the structure of DPPC or SP-C in the monolayer at higher surface pressures.  相似文献   

14.
15.
In the present study, we characterized surfactant protein (SP)-A messenger RNA (mRNA) in mid-trimester human fetal trachea and bronchi. SP-A protein was localized by immunocytochemistry to scattered epithelial cells in the airway surface epithelium and in submucosal glands of the fetal trachea and bronchi. SP-A mRNA (2.2 kb) was detected by Northern blot analysis in human fetal trachea, as well as in primary and more distal bronchi. The levels of detectable SP-A mRNA were highest in the upper airways and were decreased in smaller bronchi in comparison. SP-A mRNA was barely detectable in the distal fetal lung tissue. In contrast, SP-A mRNA was abundant in cultured explants of distal human fetal lung tissue. SP-A1 and SP-A2 mRNA were detected by primer extension analysis in adult human lung tissue and in cultured human fetal lung explants. Only SP-A2 mRNA was detected in RNA isolated from human fetal trachea and bronchi. SP-A mRNA was localized by in situ hybridization in the fetal trachea and bronchi in scattered cells in the surface epithelium and, most prominently, in submucosal glands. Our results suggest that SP-A2, and not SP-A1, is produced in the human fetal tracheal and bronchial epithelium and in submucosal glands.  相似文献   

16.
17.
Two methods were employed for preparation of lipid extracts from porcine lung surfactant. Pulmonary surfactant proteins SP-B and SP-C were isolated from the extracts using gel-exclusion chromatography on LH-60 with chloroform:methanol acidified with hydrochloric acid. Monolayers of pure SP-B or SP-C isolated from butanol lipid extracts spread at the air-water interface showed larger molecular areas than those determined in films of SP-B or SP-C isolated from chloroform surfactant extracts. Aqueous dispersions of dipalmitoylphosphatidylcholine (DPPC) supplemented with 2.5 and 5.0 wt% of SP-B or SP-C obtained from butanol extracts adsorbed faster to the air-water interface than their counterparts reconstituted with proteins isolated from chloroform extracts. Surface pressure-area characteristics of spread monolayers of DPPC plus SP-B or SP-C did not depend on the method of isolation of the proteins. The diagrams of the mean molecular areas vs. composition for the monolayers of DPPC plus SP-B or SP-C showed positive deviations from the additivity rule, independently of the procedure used for preparation of lipid extract surfactant. Matrix-assisted laser desorption/ionization spectrometry of the proteins isolated from different extraction solvents was consistent with some differences in the chemical compositions of SP-Bs. Butylation of SP-B during extraction of surfactant pellet with butanol may account for the differences observed in the molecular masses of SP-Bs isolated by the two different extraction protocols. The study suggests that the method of purification of SP-B and SP-C may modify their ability to enhance the adsorption rates of DPPC/protein mixtures, and this may be relevant to the formulation of protein-supplemented lipids for exogenous treatment of pulmonary surfactant insufficiency.  相似文献   

18.
19.
In the 35-residue pulmonary surfactant-associated lipopolypeptide C (SP-C), the stability of the valyl-rich alpha-helix comprising residues 9-34 has been monitored by circular dichroism, nuclear magnetic resonance, and Fourier transform infrared spectroscopy in both a mixed organic solvent and in phospholipid micelles. The alpha-helical form of SP-C observed in freshly prepared solutions in a mixed solvent of CHCl3/CH3OH/0.1 M HCl 32:64:5 (v/v/v) at 10 degrees C undergoes within a few days an irreversible transformation to an insoluble aggregate that contains beta-sheet secondary structure. Hydrogen exchange experiments revealed that this conformational transition proceeds through a transition state with an Eyring free activation enthalpy of about 100 kJ mol(-1), in which the polypeptide segment 9-27 largely retains a helical conformation. In dodecylphosphocholine micelles, the helical form of SP-C was maintained after seven weeks at 50 degrees C. The alpha-helical form of SP-C thus seems to be the thermodynamically most stable state in this micellar environment, whereas its presence in freshly prepared samples in the aforementioned mixed solvent is due to a high kinetic barrier for unfolding. These observations support a previously proposed pathway for in vivo synthesis of SP-C through proteolytic processing from a 21-kDa precursor protein.  相似文献   

20.
Herein, we report that the adenovirus E3-14.7K protein inhibits the inflammatory response to adenovirus in transgenic mice in which the E3-14.7K gene was selectively expressed in the respiratory epithelium, using the human surfactant protein C (SP-C) promoter. E3-14.7K mRNA and protein were detected specifically in the lungs of SPC/E3-14.7K transgenic mice. Responses of the transgenic mice to Av1Luc1, an E1-E3-deleted Ad vector encoding the luciferase reporter gene, were examined, including vector transgene expression and lung inflammation. In wild-type mice, luciferase activity declined rapidly and was lost 14 days following Av1Luc1 administration. The loss of luciferase activity was associated with pulmonary infiltration by macrophages and lymphocytes. In heterozygous SPC/E3-14.7K mice, luciferase activity was increased by 7 days compared with control littermates, and pulmonary infiltration by macrophages was decreased. In homozygous (+/+) SPC/E3-14.7K mice, luciferase activity was increased 7, 14, and 21 days following administration compared with wild-type mice, and lung inflammation was markedly reduced. After Av1Luc1 administration, PCNA staining of bronchiolar and alveolar respiratory epithelial cells was decreased in SPC/E3-14.7K transgenic mice, indicating decreased epithelial cell proliferation, a finding consistent with the observed reduction in inflammation. CD4 and CD8 lymphocyte populations were only mildly altered, while humoral responses to adenoviral vectors were unchanged in the SPC/E3-14.7K mice. The E3-14.7K protein expressed selectively in respiratory epithelial cells suppresses Ad-induced pulmonary epithelial cell cytotoxicity and lung inflammation in vivo and prolongs reporter gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号