首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuroprotective effects of ifenprodil, a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, against glutamate cytotoxicity were examined in cultured rat cortical neurons. The viability of the cultures was markedly reduced by a 10-min exposure to glutamate followed by incubation with glutamate-free medium for 60 min. Ifenprodil and its derivative SL 82.0715 dose-dependently prevented cell death induced by glutamate. The NMDA antagonists MK-801 and 3-[(+/-)-2-carboxypiperazin-4-yl]propyl-1-phosphonic acid also prevented glutamate cytotoxicity with a potency similar to that of ifenprodil. Ifenprodil as well as MK-801 prevented NMDA-induced cytotoxicity, but did not affect kainate-induced cytotoxicity. Glutamate cytotoxicity was inhibited by removing extracellular Ca++ during and immediately after glutamate exposure. Ifenprodil and MK-801 reduced NMDA-induced Ca++ influx measured with rhod-2. Either spermidine, a polyamine modulatory site agonist, or glycine, a strychnine-insensitive glycine site agonist, potentiated NMDA- and glutamate-induced cytotoxicity. The protective effects of ifenprodil against NMDA- and glutamate-induced cytotoxicity were significantly reduced by spermidine, but not by glycine. These findings indicate that ifenprodil protects cortical neurons against glutamate cytotoxicity by selective antagonism of the polyamine modulatory site of the NMDA receptor complex.  相似文献   

2.
The effects of brain-derived neurotrophic factor (BDNF) on glutamate-induced cytotoxicity were examined using primary cultures of rat cortical neurons. BDNF induced TrkB tyrosine phosphorylation in rat cultured cortical neurons. The cell viability was significantly reduced when cultures were briefly exposed to glutamate and incubated with normal medium for 24 h. Glutamate cytotoxicity was prevented by MK-801, which is a non-competitive blocker of N-methyl-D-aspartate and N(omega)-nitro-L-arginine, which is a blocker of nitric oxide synthetase. Delayed neurotoxicity was also induced by ionomycin, a calcium ionophore, and nitric oxide (NO) donors such as S-nitrosocysteine (SNOC) and 3-morpholinosydnonimine (SIN-1). Incubating cultures with BDNF for 10 min to 24 h protected cortical neurons against glutamate neurotoxicity. The protective effects of BDNF against glutamate cytotoxicity were dependent on both its concentrations and incubation time. BDNF also prevented the ionomycin-, SNOC-, and SIN-1 induced cytotoxicity. These results indicate that BDNF protects cultured cortical neurons from NMDA receptor-mediated glutamate neurotoxicity by reducing cytotoxic action of NO.  相似文献   

3.
The effects of four glutamate receptor antagonists on alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)- and N-methyl-D-aspartate (NMDA)-responses were evaluated using both in vitro and in vivo electrophysiological techniques: whole cell patch-clamp recordings from cultured mouse cortical neurones and microiontophoresis in the rat hippocampus. The compounds tested were NBQX (2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline), GYKI 52466 (1-(4-amino-phenyl)-4-methyl-7,8-methyl-endioxyl-5H-2,3-benzodiaze pine), PNQX (pyrido[3, 4-f]quinoxaline-2,3-dione, 1,4,7,8,9,10-hexahydro-9-methyl-6-nitro-, methanesulfonate), NS377 (7-ethyl-5-phenyl-1,6,7,8-tetrahydro-1,7-diaza-as-indacene-2 ,3-dione), and MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenz(a,d)cycloheptene-5,10-imine hydrogen maleate). In vitro, the IC50 values (in microM) for inhibition of AMPA-evoked inward currents were approximately 0.4 for NBQX, approximately 7.5 for GYKI 52466, approximately 1 for PNQX and approximately 15 for NS377. PNQX and NS377 also inhibited NMDA-induced currents with IC50 values at approximately 5 and approximately 18 microM, respectively, while NBQX at 60 microM and GYKI 52466 at 100 microM had only weak effects. The ED50 values in micromol/kg i.v. for inhibition of AMPA-evoked hippocampal neuronal spike activity in vivo were approximately 32 for NBQX, approximately 19 for GYKI 52466, approximately 17 for PNQX and approximately 11 for NS377 with efficacy values (maximal inhibition) between 71% and 81%. The ED50 values (in [Lmol/kg i.v.) and efficacy values for inhibition of NMDA-evoked hippocampal neuronal spike activity were approximately 28 with an efficacy of 61% for NBQX, approximately 16 with 35% for PNQX and approximately 6 with 61% for NS377. GYKI 52466 did not significantly affect NMDA responses, whereas MK-801 showed NMDA specificity in vivo.  相似文献   

4.
Developmental changes in the effects of arachidonic acid (AA) on N-methyl-D-aspartate (NMDA) receptor-mediated currents were investigated in acutely dissociated rat cortical neurones using a whole-cell patch-clamp method. AA potentiated peak NMDA currents (INMDA) in a concentration-dependent manner. Potentiation by AA was greater at 2-4 postnatal days (P2-4) than at P7-8 and P15-18. Indomethacin reduced the potentiating effect of AA only at P2-4, while caffeic acid and baicalein showed no apparent effect, indicating that metabolites of the cyclooxygenase pathway contribute to INMDA potentiation at P2-4. Staurosporine diminished the potentiation of INMDA at P2-4, suggesting that protein kinase C might participate in the effect of AA. These findings suggest that the greater potentiation of INMDA by AA at P2-4 has a different underlying mechanism from effects seen at P7-8 or older.  相似文献   

5.
1. The patch clamp technique, together with intracellular perfusion of the catalytic fragment of protein kinase C (PKCM), was employed to investigate the role of this enzyme in the intracellular regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainate receptors in cultured hippocampal neurones. 2. The responses evoked by near-maximal concentrations of kainate (250 microM) and AMPA (100 microM) were potentiated by the introduction of PKCM, whilst co-application of the inhibitory peptide fragment PKCI(19-36) prevented this action. 3. Modulation of kainate responses by PKCM was dependent upon the concentration of agonist applied. Currents evoked by kainate were potentiated at concentrations above those which caused 50% of the maximal response (EC50) and depressed at lower concentrations. Furthermore, okadaic acid, a specific inhibitor of phosphatases 1 and 2A, had a similar effect upon concentration-response relationships when currents activated by kainate were recorded using the perforated patch technique. 4. In addition, the mean amplitude and/or time constant of decay of miniature excitatory synaptic currents (mediated by AMPA/kainate receptors) was increased by the intracellular injection of PKCM. 5. These observations suggest that the function of postsynaptic excitatory amino acid receptors can be modulated by the activity of PKC as well as by endogenous phosphatases. This regulation may contribute to some forms of synaptic plasticity within the central nervous system.  相似文献   

6.
Excitotoxicity induced by L-glutamate (Glu), when examined in a pure neuronal cortical culture, involved widespread apoptosis at concentrations of 1-10 microM as part of a continuum of injury, which at its most servere was purely necrotic. Cells, maintained in chemically defined neurobasal/B27 medium, were exposed at d7 for 2 h to Glu (1-500 microM), and cellular injury was analysed 2 and 24 h after insult using morphology (phase-contrast microscopy), a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay, nuclear staining with 4,6-diamidino-2-phenylindole (DAPI), terminal transferase-mediated dUTP nick end-labelling (TUNEL) and DNA fragmentation by gel electrophoresis. Glu-mediated neurotoxicity was prevented by MK-801 (5 microM), whilst CNQX (20 microM) attenuated injury by 20%. Exposure to intensive insults (100 and 500 microM Glu) induced necrosis characterized by rapid cell swelling (< 2 h) and lack of chromatin condensation, confirmed by DAPI nuclear staining. In contrast, mild insults (< 20 microM Glu) failed to produce acute neuronal swelling at < 2 h, but 24 h after injury resulted in a large number of apoptotic nuclei as confirmed by TUNEL and electrophoretic evidence of DNA fragmentation, which was attenuated by cycloheximide (0.1 microg/ml). Our findings indicate for the first time that physiological concentrations of Glu produce neuronal injury across a continuum involving apoptosis (< 20 microM) and increasingly necrosis(> 20 microM), dependent on the severity of the initial insult.  相似文献   

7.
The N-terminal region of human cystatin C has been shown to be of crucial importance for the interaction of the inhibitor with cysteine proteinases. However, several studies have been unable to identify the corresponding region in bovine cystatin C, indicating that the binding of proteinases to the bovine inhibitor may not be dependent on this region. With the aim to resolve this apparent discrepancy and to elucidate the relation of bovine cystatin C to other cystatins, we have isolated a cDNA clone encoding bovine precystatin C. The sequence of this cDNA was similar to that of the human inhibitor and showed a putative signal peptidase cleavage site consistent with the N-terminal regions of the bovine and human inhibitors being of comparable size. This suggestion was verified by determination of the relative molecular mass of the mature bovine inhibitor isolated from cerebrospinal fluid under conditions minimising proteolysis. The N-terminal of the purified inhibitor was blocked, but the sequence of the N-terminal peptide produced by digestion with endopeptidase LysC could be unequivocally determined by tandem mass spectroscopy. Together, these results show that bovine cystatin C has 118 residues, in contrast with 110-112 residues reported previously, and has an N-terminal region analogous to that of human cystatin C. This region presumably is of similar importance for tight binding of target proteinases as in the human inhibitor.  相似文献   

8.
The present study was conducted to assess the intracellular signaling pathways mediated by receptors for ATP, uridine triphosphate (UTP), and 2-methylthio ATP (2-MeSATP), by monitoring patch-clamp currents and intracellular calcium mobilization in cultured rat cortical cerebral neurons. All three agonists evoked potassium currents and increased the intracellular free Ca2+ concentration ([Ca2+]i), and these effects were inhibited by the broad G-protein inhibitor guanosine-5'-O-(2-thiodiphosphate) (GDPbetaS) but not by the Gi/o-protein inhibitor pertussis toxin (PTX). UTP-evoked currents were inhibited by either the phospholipase C inhibitor neomycin or the selective protein kinase C (PKC) inhibitor GF109203X, and the rise in cytosolic Ca2+ was inhibited by either neomycin or the inositol 1,4,5-trisphosphate (IP3) receptor antagonist heparin, indicating that the UTP receptor involved phospholipase C-mediated phosphatidylinositol signaling. In contrast, 2-MeSATP-induced currents and rise in cytosolic Ca2+ were not inhibited by either neomycin, or GF109203X, or heparin. 2-MeSATP elicited single-channel currents in the cell-attached patch-clamp configuration and also in excised patches. The G-protein activator GTP gamma S induced single-channel currents in a fashion that mimicked the effect of 2-MeSATP. These data suggest that 2 MeSATP activated potassium channels by a direct action of G-protein beta gamma subunits and increased [Ca2+]i by a mechanism independent of phospholipase C stimulation and IP3 production. ATP-evoked currents were partially inhibited by either neomycin or GF109203X, although the rise in cytosolic Ca2+ was not affected by these inhibitors. ATP produced single-channel currents with two major classes of the slope conductance (86 and 95 pS) in cell-attached patches, each of which is consistent with that achieved by 2-MeSATP (85 pS) or UTP (96 pS); the currents with the lower conductance were observed in the outside-out patch-clamp configuration. These results indicate that P2 receptors for UTP and 2-MeSATP are linked to a PTX-insensitive G-protein involving different signal transduction pathways and that ATP responses are mediated by both of these P2 receptors.  相似文献   

9.
10.
The presence of specific, saturable receptor sites for excitatory amino acids (EAA) in membranes from cultured human retinal pigment epithelium (RPE) was established through the binding of [3H]L-glutamate (L-Glu). The age of the donors ranged from 6 days to 33 years. The affinity of the binding (KB) sites was between 1.2 and 1.5 microM, and did not change with the age of the donor, whereas the Bmax was slightly increased (8.6 to 13.0 pmol/mg) in membranes from the 33 year-old compared to the 29 day-old donor. The efficacy profile of agonists and antagonists acting at EAA receptors for displacing [3H]L-Glu was L-Glu = L-Aspartate > 2-amino-4-phosphonovalerate (AP5) > N-methyl-D-Aspartate (NMDA) > 1-aminocyclopentane-1,3 dicarboxylate (trans-ACPD) > 2-amino-3-phosphonopropionate (AP3). These data suggest the presence of either an NMDA-receptor sensitive to the metabotropic agonist trans-ACPD or alternatively, the presence of two different populations of receptors with similar affinity for the agonist: NMDA and metabotropic. Glycine highly stimulated Glu-binding; this effect was inversely related to the age of the donor. Taurine and to a lesser extent GABA, mimicked this effect. Stimulation by glycine was dose-dependent, insensitive to strychnine and 80% inhibited by 7-chlorokynurenate. This effect was also present in human RPE-derived fibroblasts, human scleral fibroblasts and the human lymphoblastoid cell line NB76, all continuously dividing cells. The results further support the possibility of the participation of EAA receptors in the regulation of phagocytosis in RPE.  相似文献   

11.
We have examined the behavioural neurotoxicity of domoic acid (DOM) and kainic acid (KA) in mice following administration of ligands active at the N-methyl-d-aspartate (NMDA) receptor. Groups of female CD-1 mice (n=4) were injected i.p. with saline or one of three doses of either DOM or KA. Doses of DOM and KA were selected from the steep portion of the respective dose response curves and were equitoxic when compared between the two ligands. Toxicity was recorded as both total cumulative toxicity over 60 min according to a previously validated 7 point rating scale, and as the latency to the onset of tremors and/or convulsions. Five minutes prior to administration of either agonist mice were injected with either saline, NMDA (40 mg/kg) or a combination of NMDA and 15 mg/kg CPP (3-[2-carboxypiperazine-4-yl]propyl-1-phosphonic acid). Neither NMDA nor CPP at these doses produced significant changes from baseline responding when injected prior to saline. Injection of NMDA prior to DOM, however, resulted in significantly increased cumulative toxicity and significantly reduced latencies to seizures at the two highest doses of DOM (3.75 and 5.0 mg/kg). NMDA-induced potentiation of DOM toxicity was completely antagonized by co-administration of CPP. In contrast, injection of NMDA prior to KA did not result in significant changes in KA toxicity at any of the doses tested using either index of behavioural toxicity. These results confirm previous reports of synergism between DOM and ligands acting at the NMDA receptor in isolated neurons, and provide further evidence of pharmacological dissociation of the actions of DOM and KA in vivo.  相似文献   

12.
In human neutrophils (PMN) the ethanolamine-containing phosphoglyceride fraction (PE), principally plasmalogen-linked PE (1-O-alk-1'-enyl-2-acyl-sn-glycero-3-phosphoethanolamine), is the major store of arachidonic acid (AA). Exogenous AA is initially incorporated into 1-acyl-linked phosphoglycerides and is believed to be transferred into the 1-ether-linked phosphoglycerides via the action of a CoA-independent transacylase (CoA-IT). We have investigated the selectivity for both the "acceptor' lysophospholipids and "donor' AA-containing phospholipid substrates in the CoA-IT reaction. Evidence suggests CoA-IT may also participate in the synthesis of platelet activating factor. The transfer of [3H]AA from endogenously labeled choline-containing phosphoglycerides (PC) to exogenously added alkenyl-lyso-PE (0-50 microM) was examined in saponin-permeabilized PMN. In these "donor' studies, we observed that [3H]AA was transferred from both alkyl- and diacyl-linked PC in a proportional manner. More detailed molecular species analysis showed that [3H]AA was deacylated from all the major AA-containing molecular species in both the alkyl and diacyl subclasses with no selectivity for either subclass. To investigate the "acceptor' selectivity, membrane fractions prelabeled with either [3H]alkyl-arachidonoyl-PE or -PC were utilized as donor substrates. Various unlabeled lysophospholipids (10 microM) were added and the generation of [3H]lyso-PE or -PC was monitored as a measure of CoA-IT activity. Significant subclass preference was observed upon addition of lyso-PE species (1-alkenyl > 1-alkyl > 1-acyl) however, little selectivity was seen with the corresponding lyso-PC species. On the other hand, lysophosphatidylserine, lysophosphatidylinositol, and lysophosphatidic acid all served as poor acceptor substrates in the reaction. These data from PMN are consistent with other evidence that the CoA-IT plays a pivotal role in the enrichment of AA into plasmalogen-linked PE.  相似文献   

13.
Effects of bile acids on tissues outside of the enterohepatic circulation may be of major pathophysiological significance under conditions of elevated serum bile acid concentrations, such as in hepatobiliary disease. Two hamster models of hepatic failure, namely functional hepatectomy (HepX), and 2-day bile duct ligation (BDL), as well as cultured human fibroblasts, were used to study the comparative tissue uptake, distribution, and cytotoxicity of lithocholic acid (LCA) in relation to various experimental conditions, such as binding of LCA to low-density lipoprotein (LDL) or albumin as protein carriers. Fifteen minutes after i.v. infusion of [24-(14)C]LCA, the majority of LCA in sham-operated control animals was recovered in liver, bile, and small intestine. After hepatectomy, a significant increase in LCA was found in blood, muscle, heart, brain, adrenals, and thymus. In bile duct-ligated animals, significantly more LCA was associated with blood and skin, and a greater than twofold increase in LCA was observed in the colon. In the hepatectomized model, the administration of LCA bound to LDL resulted in a significantly higher uptake in the kidneys and skin. The comparative time- and concentration-dependent uptake of [14C]LCA, [14C]chenodeoxycholic acid (CDCA), and [14C]cholic acid (CA) in cultured human fibroblasts was nonsaturable and remained a function of concentration. Initial rates of uptake were significantly increased by approximately tenfold, with decreasing hydroxylation of the respective bile acid. After 1 hour of exposure of fibroblasts to LCA, there was a significant, dose-dependent decrease in mitochondrial dehydrogenase activity from 18% to 34% of the control, at LCA concentrations ranging from 1 to 20 micromol/L. At a respective concentration of 100 and 700 micromol/L, CDCA caused a 35% and 99% inhibition of mitochondrial dehydrogenase activity. None of the bile acids tested, with the exception of 700 micromol/L CDCA, caused a significant release of cytosolic lactate dehydrogenase into the medium. In conclusion, we show that bile acids selectively accumulate in nonhepatic tissues under two conditions of impaired liver function. Furthermore, the extrahepatic tissue distribution of bile acids during cholestasis may be affected by serum lipoprotein composition. At a respective concentration of 1 and 100 micromol/L, LCA and CDCA induced mitochondrial damage in human fibroblasts, after just 1 hour of exposure. Therefore, enhanced extrahepatic uptake of hydrophobic bile acids during liver dysfunction, or disorders of lipoprotein metabolism, may have important implications for bile-acid induced cytotoxic effects in tissues of the systemic circulation.  相似文献   

14.
We have investigated the effects of chronic treatment with the neurosteroid 5 alpha-pregnan-3 alpha-ol-20-one (5 alpha 3 alpha) on the gamma-aminobutyric acid (GABA)A receptor complex in cultured mammalian cortical neurons. Chronic 5 alpha 3 alpha treatment (up to 2 microM, 5 days) did not produce any changes in the morphological appearance or the cell protein content of cortical neurons. The basal binding of [3H]flunitrazepam, [3H]Ro15-1788, and [3H]Ro15-4513 was not altered after the chronic treatment. Chronic 5 alpha 3 alpha treatment did not alter the Kd or Bmax values of [3H]flunitrazepam binding to intact cortical neurons. However, chronic 5 alpha 3 alpha treatment produced uncoupling between GABA, barbiturate, and neurosteroid sites and the benzodiazepine site. The EC50 values of these ligands were not significantly altered; however, their Emax values were decreased after chronic 5 alpha 3 alpha treatment. The 5 alpha 3 alpha-induced uncoupling was time and concentration dependent. The binding of [3H]GABA and t-[35S]butylbicyclophosphorothionate was also decreased after chronic 5 alpha 3 alpha treatment. Chronic 5 alpha 3 alpha treatment decreased the Bmax of the low affinity GABAA receptor sites, without affecting the high affinity sites, and decreased the Bmax of t-butylbicyclophosphorothionate binding sites. The EC50 value for GABA-induced 36Cl- influx was not altered, whereas the Emax value was decreased after chronic 5 alpha 3 alpha treatment. Furthermore, the 5 alpha 3 alpha-induced uncoupling was reversed by concomitant exposure of the cortical neurons to 5 alpha-pregnan-3 beta-ol-20-one or R5135, suggesting an involvement of the neurosteroid and GABA recognition sites in the observed uncoupling. Taken together, these results suggest that chronic 5 alpha 3 alpha treatment produces heterologous uncoupling at the GABAA receptor complex.  相似文献   

15.
We have cultured neurones from the developing cortex of mice that have had the amyloid precursor protein gene deleted (APP-null). Neurones cultured for a period of 24 h show similar neurite outgrowth and survival responses to wild-type neurones. Similar neurite outgrowth responses were also seen when neurones from APP-null mice were treated with a neurotrophic peptide derived from the APP sequence and compared with wild-type neurones. Finally, cortical cultures derived from APP-null mice showed similar survival responses to the toxic amyloid-beta peptide.  相似文献   

16.
In view of the neurotrophic effect of vasoactive intestinal peptide (VIP), the regulation of brain-derived neurotrophic factor (BDNF) expression by VIP and the related peptide pituitary adenylate cyclase-activating polypeptide (PACAP) was analysed by Northern blot in primary cultures of cortical neurones. Results reported in this article demonstrate that VIP and PACAP stimulate the expression of BDNF mRNA in primary cultures of cortical neurones and astrocytes. In primary cultures of cortical neurones, induction of BDNF mRNA by VIP and PACAP is completely inhibited by the N-methyl-D-aspartate (NMDA) receptor antagonists MK-801 and AP5, therefore indicating that VIP and PACAP do not stimulate BDNF expression directly but rather by potentiating the effect of glutamate tonically released by neurones and acting at NMDA receptors. In addition to its neurotrophic effects, BDNF has been shown to be involved in neuronal plasticity and results reported here suggest that by stimulating BDNF expression, VIP and PACAP could modulate synaptic plasticity in the cerebral cortex.  相似文献   

17.
This study investigates reactive oxygen species generation and oxidant-related cytotoxicity induced by amosite asbestos fibers and polymorphonuclear leucocytes (PMNs) in human mesothelial cells and human bronchial epithelial cells in vitro. Transformed human pleural mesothelial cells (MET 5A) and bronchial epithelial cells (BEAS 2B) were treated with amosite (2 micrograms/cm2) for 48 h. After 24 h of incubation, the cells were exposed for 1 h to nonactivated or amosite (50 micrograms) activated PMNs, washed, and incubated for another 23 h. Reactive oxygen species generation by the PMNs and the target cells was measured by chemiluminescence. Cell injury was assessed by cellular adenine nucleotide depletion, extracellular release of nucleotides, and lactate dehydrogenase (LDH). Amosite-activated (but also to a lesser degree nonactivated) PMNs released substantial amounts of reactive oxygen metabolites, whereas the chemiluminescence of amosite-exposed mesothelial cells and epithelial cells did not differ from the background. Amosite treatment (48 h) of the target cells did not change intracellular adenine nucleotides (ATP, ADP, AMP) or nucleotide catabolite products (xanthine, hypoxanthine, and uric acid). When the target cells were exposed to nonactivated PMNs, significant adenine nucleotide depletion and nucleotide catabolite accumulation was observed in mesothelial cells only. In separate experiments, when the target cells were exposed to amosite-activated PMNs, the target cell injury was further potentiated compared with the amosite treatment alone or exposure to nonactivated PMNs. In conclusion, this study suggests the importance of inflammatory cell-derived free radicals in the development of amosite-induced mesothelial cell injury.  相似文献   

18.
The microdialysis technique was used to examine the effect of the neurotoxin domoate, an analog of glutamic acid, on striatal dopamine activity. Our results show that the intracerebral administration of different concentrations of domoate (100 and 500 microM) produced increases in the extracellular levels of dopamine associated to decreases in the extracellular levels of its metabolites dihydroxyphenylacetate and homovanillate from rat striatum. These changes seem to be related according to a time sequence, indicating a possible effect on the metabolism of dopamine. Changes were also observed in locomotor activity (cycling behavior, sniffing around and chewing) in rats during the domoate infusion. The physiological mechanism by which domoate increased dopamine release remains to be worked out.  相似文献   

19.
The effects of ethanol on spontaneous excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) were studied in a culture of embryonic rat cortical neurons. In these experiments, EPSCs and IPSCs were recorded concurrently as inward and outward currents, respectively. These spontaneous currents were dominated by a slow (<1 Hz) repetitive pattern of prolonged N-methyl D-aspartate (NMDA)-EPSCs and co-occurring IPSCs when Mg2+ was left out of the perfusate. A 3- to 5-min bath perfusion of 100 mM ethanol reduced the average integrated EPSC by 65%, while simultaneously potentiating IPSCs by about 3-fold. EPSC frequency was also reduced by about one-third. NMDA-mediated EPSCs were inhibited more than non-NMDA currents. A perfusion of 30 mM ethanol was less effective and probably represents a threshold concentration for these effects. The ethanol inhibition of currents evoked by directly applied glutamate or NMDA to these cells was much less than that observed for spontaneous EPSCs. Currents evoked by exogenous gamma-aminobutyric acid (GABA) application were never potentiated by ethanol. When spontaneous NMDA-EPSCs were blocked with an NMDA antagonist, ethanol no longer potentiated the IPSCs. However, benzodiazepine treatment increased these IPSCs 2-fold. In other experiments, spontaneous IPSCs were blocked by a GABA(A) antagonist. Here, the EPSCs occurred as groups of repetitive bursts. Ethanol decreased the total number of EPSCs per burst but did not decrease their overall amplitude, as in the control recordings. Thus, the way in which ethanol affects concurrently recorded spontaneous EPSCs and IPSCs appears different from the way in which it affects isolated GABA- and NMDA-evoked currents. In addition, the antagonist studies show that concurrently activated NMDA and GABA channels each tend to limit the responses of the other. Thus, the overall effect of ethanol on spontaneous activity may result, in part, by a modification of this synaptic interaction.  相似文献   

20.
Two experiments with 38 rats examined the neurotoxic effects of domoic acid. In Exp 1, iv injection of 0.5–2.0 mg/kg or intraventricular (ivc) injection of 0.04–0.08 μg of domoic acid caused seizures in the hippocampus, tonic-clonic convulsions, and death within a few days. Convulsions and ensuing death were prevented by diazepam. Ss pretreated with intraperitoneal/ly (ip) diazepam (5 mg/kg) tolerated an ivc dose of domoic acid of 0.4 μg, but showed a loss of pyramidal neurons mainly in the CA3, the CA4, and a part of the CA1 areas of the dorsal hippocampus. In Exp 2, learning of a radial maze task was severely impaired in naive Ss after ivc injection of domoic acid (and diazepam, ip). In Ss previously trained on the maze task, domoic acid interfered with relearning of the same task. (French abstract) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号