首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The frequency response of primary saccular afferents of toadfish (Opsanus tau) was studied in the time and frequency domains using the reverse correlation (revcor) method. Stimuli were noise bands with flat acceleration spectra delivered as whole-body motion. The recorded acceleration waveform was averaged over epochs preceding and following each spike. This average, termed the revcor, is an estimate of the response of an equivalent linear filter intervening between body motion and spike initiation. The spectrum of the revcor estimates the shape of the equivalent linear filter. Revcor responses were brief, damped oscillations indicative of relatively broadly tuned filters. Filter shapes were generally band-pass and differed in bandwidth, band edge slope, and characteristic frequency (74 Hz to 140 Hz). Filter shapes tend to be independent of stimulus level. Afferents can be placed into two groups with respect to characteristic frequency (74-88 Hz and 140 Hz). Some high-frequency afferents share a secondary peak at the characteristic frequency of low-frequency afferents, suggesting that an afferent may receive differently tuned peripheral inputs. For some afferents having similar filter shapes, revcor responses often differ only in polarity, probably reflecting inputs from hair cells oriented in opposite directions. The origin of frequency selectivity and its diversity among saccular afferents may arise from a combination of hair cell resonance and micromechanical processes. The resulting frequency analysis is the simplest yet observed among vertebrate animals. During courtship, male toadfish produce the 'boatwhistle' call, a periodic vocalization having several harmonics of a 130 Hz fundamental frequency. The saccule encodes the waveform of acoustic particle acceleration between < 50 and about 250 Hz. Thus, the fundamental frequency component of the boatwhistle is well encoded, but the successive higher harmonics are filtered out. The boatwhistle is thus encoded as a time-domain representation of its fundamental frequency or pulse repetition rate.  相似文献   

2.
This paper reports on directional response properties of saccular afferents of the sleeper goby, Dormitator latifrons, to 100-Hz acoustic particle motions with a focus on testing the hypothesis that the response directionality of a fish's auditory afferents derives from the morphological polarity of sensory hair cells in the otolithic organs. Spontaneous rates (SR) and best sensitivities (BS) of saccular afferents ranged from 0 to 162 spikes/sec and from 0.2-to 100-nm RMS displacement. SR did not vary with BS. Most saccular afferents were phase-locked to sinusoidal stimulation and had sustained temporal response patterns with some adaptation. All saccular afferents were directionally sensitive to the stimulus, and the sharpness of directional response curves was determined by a directionality index (DI). The DI ranged from 0.64 to 1.50 (mean = 1.02, SE = 0.02, n = 100) and gradually decreased with stimulus level throughout afferents' response dynamic range. Many afferents had approximately symmetric directional response curves relative to their best response axes (BRA). BRA of most afferents remained constant with stimulus level. The BRA distribution had a peak along an axis that correlates closely with the morphological polarity of saccular hair cells. Therefore, our results strongly support the hypothesis.  相似文献   

3.
针对钢铁厂转炉一次烟气含尘浓度高、颗粒物细的特点,提出一种声波耦合旋流除尘新技术,用于降低转炉一次烟气细颗粒物浓度。采用单因素试验和响应面法研究了声压级、声频率、停留时间及烟气进气方式对颗粒物浓度降低率的影响。单因素试验结果表明,转炉一次烟气颗粒物团聚效率随声压级升高而增大,但存在最佳团聚频率。相比单一声波团聚,声波耦合旋流除尘技术对细颗粒物有很好的团聚效果。响应面法优化试验得出,当声压级为140 dB、声频率为1 400 Hz、停留时间为8 s时,采用旋流进气方式颗粒物浓度降低率最高,达33%。研究结果为提高转炉一次烟气中细颗粒物的去除效率及工艺开发提供参考。  相似文献   

4.
针对钢铁厂转炉一次烟气含尘浓度高、颗粒物细的特点,提出一种声波耦合旋流除尘新技术,用于降低转炉一次烟气细颗粒物浓度。采用单因素试验和响应面法研究了声压级、声频率、停留时间及烟气进气方式对颗粒物浓度降低率的影响。单因素试验结果表明,转炉一次烟气颗粒物团聚效率随声压级升高而增大,但存在最佳团聚频率。相比单一声波团聚,声波耦合旋流除尘技术对细颗粒物有很好的团聚效果。响应面法优化试验得出,当声压级为140 dB、声频率为1 400 Hz、停留时间为8 s时,采用旋流进气方式颗粒物浓度降低率最高,达33%。研究结果为提高转炉一次烟气中细颗粒物的去除效率及工艺开发提供参考。  相似文献   

5.
The three-dimensional (3-D) properties of the translational vestibulo-ocular reflexes (translational VORs) during lateral and fore-aft oscillations in complete darkness were studied in rhesus monkeys at frequencies between 0.16 and 25 Hz. In addition, constant velocity off-vertical axis rotations extended the frequency range to 0.02 Hz. During lateral motion, horizontal responses were in phase with linear velocity in the frequency range of 2-10 Hz. At both lower and higher frequencies, phase lags were introduced. Torsional response phase changed more than 180 degrees in the tested frequency range such that torsional eye movements, which could be regarded as compensatory to "an apparent roll tilt" at the lowest frequencies, became anticompensatory at all frequencies above approximately 1 Hz. These results suggest two functionally different frequency bandwidths for the translational VORs. In the low-frequency spectrum (<0.5 Hz), horizontal responses compensatory to translation are small and high-pass-filtered whereas torsional response sensitivity is relatively frequency independent. At higher frequencies however, both horizontal and torsional response sensitivity and phase exhibit a similar frequency dependence, suggesting a common role during head translation. During up-down motion, vertical responses were in phase with translational velocity at 3-5 Hz but phase leads progressively increased for lower frequencies (>90 degrees at frequencies <0.2 Hz). No consistent dependence on static head orientation was observed for the vertical response components during up-down motion and the horizontal and torsional response components during lateral translation. The frequency response characteristics of the translational VORs were fitted by "periphery/brain stem" functions that related the linear acceleration input, transduced by primary otolith afferents, to the velocity signals providing the input to the velocity-to-position neural integrator and the oculomotor plant. The lowest-order, best-fit periphery/brain stem model that approximated the frequency dependence of the data consisted of a second order transfer function with two alternating poles (at 0.4 and 7.2 Hz) and zeros (at 0.035 and 3.4 Hz). In addition to clearly differentiator dynamics at low frequencies (less than approximately 0.5 Hz), there was no frequency bandwidth where the periphery/brain stem function could be approximated by an integrator, as previously suggested. In this scheme, the oculomotor plant dynamics are assumed to perform the necessary high-frequency integration as required by the reflex. The detailed frequency dependence of the data could only be precisely described by higher order functions with nonminimum phase characteristics that preclude simple filtering of afferent inputs and might be suggestive of distributed spatiotemporal processing of otolith signals in the translational VORs.  相似文献   

6.
The origin of orientation selectivity in visual cortical responses is a central problem for understanding cerebral cortical circuitry. In cats, many experiments suggest that orientation selectivity arises from the arrangement of lateral geniculate nucleus (LGN) afferents to layer 4 simple cells. However, this explanation is not sufficient to account for the contrast invariance of orientation tuning. To understand contrast invariance, we first characterize the input to cat simple cells generated by the oriented arrangement of LGN afferents. We demonstrate that it has two components: a spatial-phase-specific component (i.e., one that depends on receptive field spatial phase), which is tuned for orientation, and a phase-nonspecific component, which is untuned. Both components grow with contrast. Second, we show that a correlation-based intracortical circuit, in which connectivity between cell pairs is determined by the correlation of their LGN inputs, is sufficient to achieve well tuned, contrast-invariant orientation tuning. This circuit generates both spatially opponent, "antiphase" inhibition ("push-pull"), and spatially matched, "same-phase" excitation. The inhibition, if sufficiently strong, suppresses the untuned input component and sharpens responses to the tuned component at all contrasts. The excitation amplifies tuned responses. This circuit agrees with experimental evidence showing spatial opponency between, and similar orientation tuning of, the excitatory and inhibitory inputs received by a simple cell. Orientation tuning is primarily input driven, accounting for the observed invariance of tuning width after removal of intracortical synaptic input, as well as for the dependence of orientation tuning on stimulus spatial frequency. The model differs from previous push-pull models in requiring dominant rather than balanced inhibition and in predicting that a population of layer 4 inhibitory neurons should respond in a contrast-dependent manner to stimuli of all orientations, although their tuning width may be similar to that of excitatory neurons. The model demonstrates that fundamental response properties of cortical layer 4 can be explained by circuitry expected to develop under correlation-based rules of synaptic plasticity, and shows how such circuitry allows the cortex to distinguish stimulus intensity from stimulus form.  相似文献   

7.
According to Einstein's equivalence principle, inertial accelerations during translational motion are physically indistinguishable from gravitational accelerations experienced during tilting movements. Nevertheless, despite ambiguous sensory representation of motion in primary otolith afferents, primate oculomotor responses are appropriately compensatory for the correct translational component of the head movement. The neural computational strategies used by the brain to discriminate the two and to reliably detect translational motion were investigated in the primate vestibulo-ocular system. The experimental protocols consisted of either lateral translations, roll tilts, or combined translation-tilt paradigms. Results using both steady-state sinusoidal and transient motion profiles in darkness or near target viewing demonstrated that semicircular canal signals are necessary sensory cues for the discrimination between different sources of linear acceleration. When the semicircular canals were inactivated, horizontal eye movements (appropriate for translational motion) could no longer be correlated with head translation. Instead, translational eye movements totally reflected the erroneous primary otolith afferent signals and were correlated with the resultant acceleration, regardless of whether it resulted from translation or tilt. Therefore, at least for frequencies in which the vestibulo-ocular reflex is important for gaze stabilization (>0.1 Hz), the oculomotor system discriminates between head translation and tilt primarily by sensory integration mechanisms rather than frequency segregation of otolith afferent information. Nonlinear neural computational schemes are proposed in which not only linear acceleration information from the otolith receptors but also angular velocity signals from the semicircular canals are simultaneously used by the brain to correctly estimate the source of linear acceleration and to elicit appropriate oculomotor responses.  相似文献   

8.
The contribution of the middle ear air spaces to sound transmission through the middle ear in canal wall-up and canal wall-down mastoidectomy was studied in human temporal bones by measurements of middle ear input impedance and sound pressure difference across the tympanic membrane for the frequency range 50 Hz to 5 kHz. These measurements indicate that, relative to canal wall-up procedures, canal wall-down mastoidectomy results in a 1 to 5 dB decrease in middle ear sound transmission below 1 kHz, a 0 to 10 dB increase between 1 and 3 kHz, and no change above 3 kHz. These results are consistent with those reported by Gyo et al. (Arch Otolaryngol Head Neck Surg 1986;112:1262-8), in which umbo displacement was used as a measure of sound transmission. A model analysis suggests that the reduction in sound transmission below 1 kHz can be explained by the smaller middle ear air space volume associated with the canal wall-down procedure. We conclude that as long as the middle ear air space is aerated and has a volume greater than 0.7 ml, canal wall-down mastoidectomy should generally cause less than 10 dB changes in middle ear sound transmission relative to the canal wall-up procedure.  相似文献   

9.
The exploratory research of applying an acoustic standing wave to a sediment flow stream to fractionate and segregate particles was investigated. Using fundamental physics of particles in an acoustic field, a mathematical model was developed to calculate trajectories of deflected particles due to the application of acoustic standing waves. Then at the bench scale, the above technology was implemented by building a flow chamber with two transducers at opposite ends to generate an acoustic standing wave. The technology was evaluated using uniform size silicon dioxide and silicon carbide particle suspensions in de-ionized water. Due to the acoustic force field, SiO2 particles migrated toward the pressure nodes at half wavelength intervals at an optimum frequency of 333 kHz and 40 W power. Dark lines representing particle columns were formed after the application of the acoustic field, which was recorded in videotape. However, due to the small particle size of SiO2, particle trajectories could not be recorded, hence the slightly larger sized SiC was used to track particle trajectories. The displacements of SiC particles due to an acoustic force were compared with the mathematical model predictions. For input power level between 3.0 and 5.0 W, the experimental data were comparable to mathematical model predictions. Also, from the experimental data it was possible to develop a relationship between input power and acoustic energy in the resonance chamber. Hence based on preliminary results it can be concluded that the acoustic field can be used either to segregate or fractionate fine particles.  相似文献   

10.
Type II units in the dorsal cochlear nucleus (DCN) are characterized by vigorous but nonmonotonic responses to best frequency tones as a function of sound pressure level, and relatively weak responses to noise. A model of DCN neural circuitry was used to explore two hypothetical mechanisms by which neurons may be endowed with type II unit response properties. Both mechanisms assume that type II units receive excitatory input from auditory nerve (AN) fibers and inhibitory input from an unspecified class of cochlear nucleus interneurons that also receive excitatory AN input. The first mechanism, a lateral inhibition (LI) model, supposes that type II units receive inhibitory input from a number of narrowly tuned interneurons whose best frequencies (BFs) flank the BF of the type II unit. Tonal stimuli near BF result in only weak inhibitory input, but broadband stimuli recruit enough lateral inhibitors to greatly weaken the type II unit response. The second mechanism, a wideband inhibition (WBI) model, supposes that type II units receive inhibitory input from interneurons that are broadly tuned so that they respond more vigorously to broadband stimuli than to tones. Physiological and anatomical evidence points to the possible existence of such a class of neurons in the cochlear nucleus. The model extends an earlier computer model of an iso-frequency DCN patch to multiple frequency slices and adds a population of interneurons to provide the inhibition to model type II units (called 12-cells). The results show that both mechanisms accurately simulate responses of type II units to tones and noise. An experimental paradigm for distinguishing the two mechanisms is proposed.  相似文献   

11.
We studied the directionality of spike rate responses of auditory nerve fibers of the grassfrog, Rana temporaria, to pure tone stimuli. All auditory fibers showed spike rate directionality. The strongest directionality was seen at low frequencies (200-400 Hz), where the spike rate could change by up to nearly 200 spikes s-1, with sound direction. At higher frequencies the directional spike rate changes were mostly below 100 spikes s-1. In equivalent dB SPL terms (calculated using the fibers' rate-intensity curves) the maximum directionalities were up to 15 dB at low frequencies and below 10 dB at higher frequencies. Two types of directional patterns were observed. At frequencies below 500 Hz relatively strong responses were evoked by stimuli from the ipsilateral (+90 degrees) and contralateral (-90 degrees) directions while the weakest responses were evoked by stimuli from frontal (0 degree or +30 degrees) or posterior (-135 degrees) directions. At frequencies above 800 Hz the strongest responses were evoked by stimuli from the ipsilateral direction while gradually weaker responses were seen as the sound direction shifted towards the contralateral side. At frequencies between 500 and 800 Hz both directional patterns were seen. The directionality was highly intensity dependent. No special adaptations for localization of conspecific calls were found.  相似文献   

12.
Various vertebrate inner-ear end organs appear to have switched their sensory function between equilibrium sensing and acoustic sensing over the courses of various lines of evolution. It is possible that all that is required to make this transition is to provide an end organ with access to the appropriate stimulus mode and frequency range. If, as we believe, however, the adaptive advantage of an acoustic sensory system lies in its ability to sort the total acoustic input into components that correspond to individual acoustic sources, and the adaptive advantage of an equilibrium sensory system lies in its ability to compute the total orientation and motion of the head without regard to the individual sources contributing to that orientation and motion, then it is easy to argue that the differences between acoustic and equilibrium sensors should be more profound than simply access to the appropriate stimuli. Effective signal-sorting requires high resolution in both time and frequency; to achieve this resolution, a peripheral tuning structure must be one of high dynamic order (i.e., constructed from multiple independent energy storage elements). If the peripheral tuning structure simply converts head acceleration to head displacement, velocity, or jerk (i.e., provides one or two steps of integration or differentiation with respect to time, where one energy storage element per step is required), then high dynamic order is inappropriate. Because the bullfrog lagena possesses both acoustic and equilibrium sensitive regions, it is especially suited for comparing these two sensor types and addressing the question of dynamic order of tuning. In this paper we report observations of the linear tuning properties of bullfrog lagenar primary afferent nerve fibers obtained by stimulating the lagena with random, dorsoventral micromotion over the frequency range from 10 Hz to 1.0 kHz. Tuning curves obtained by reverse correlation analysis and discrete Fourier transformation were used to estimate the dynamic order of each fiber's associated peripheral tuning structure. We found two classes of lagenar afferent axons--those with lowpass amplitude tuning characteristics (44 units) and those with bandpass amplitude tuning characteristics (73 units). Lowpass units were found to originate at the equilibrium region of the macula, and they exhibited low dynamic order--summed low- and high-frequency slopes (absolute values) ranged from 10 dB/decade to 64 dB/decade, implying dynamic orders of less than one to three (the modal value was equal to one). Bandpass units were found to originate at the acoustic region of the macula, and they exhibited higher dynamic order than lowpass units--summed low- and high-frequency slopes (absolute values) ranged from 53 dB/decade to 185 dB/decade, implying dynamic orders of three to nine (the modal value was equal to five). It appears that while lagenar equilibrium and acoustic sensors both possess access to signals in the acoustic frequency range, lagenar acoustic sensors are tuned by means of peripheral structures with markedly greater dynamic order and consequently markedly greater physical complexity. These results suggest that steep-sloped (high-dynamic-order) tuning properties reflect special adaptations in acoustic sensors not found in equilibrium sensors, and that any evolutionary transition between the two sensor types must have involved profound structural changes.  相似文献   

13.
Many cells in the dorsal part of the medial superior temporal (MST) region of visual cortex respond selectively to specific combinations of expansion/contraction, translation, and rotation motions. Previous investigators have suggested that these cells may respond selectively to the flow fields generated by self-motion of an observer. These patterns can also be generated by the relative motion between an observer and a particular object. We explored a neurally constrained model based on the hypothesis that neurons in MST partially segment the motion fields generated by several independently moving objects. Inputs to the model were generated from sequences of ray-traced images that simulated realistic motion situations, combining observer motion, eye movements, and independent object motions. The input representation was based on the response properties of neurons in the middle temporal area (MT), which provides the primary input to area MST. After applying an unsupervised optimization technique, the units became tuned to patterns signaling coherent motion, matching many of the known properties of MST cells. The results of this model are consistent with recent studies indicating that MST cells primarily encode information concerning the relative three-dimensional motion between objects and the observer.  相似文献   

14.
The acoustic responses of cells in the basal forebrain were studied in the adult waking guinea pig. Frequency receptive fields were obtained across wide frequency (0.094-45.0 kHz) and intensity (0-90 dB) ranges. A total of 326 recordings were obtained in 26 electrode penetrations from five subjects; 205 from the globus pallidus (GP), 98 from the caudate-putamen (CPu) and 23 from the central nucleus of the amygdala (ACE). Twenty-nine recordings exhibited acoustic responses (GP=20 (9.8%); CPu=9 (9.2%); ACE=0). Cells in the regions of the GP that project to the primary auditory cortex (ACx) exhibited frequency tuning that was dominantly suppressive. Responses in the CPu were excitatory, but poorly tuned. The spontaneous rate of discharge of GP cells that yielded complete tuning data was positively correlated with power in the beta bands (12-25 and 25-50 Hz) and negatively correlated with power in the delta band (1-4 Hz) of the EEG of the ACx. These findings suggest that acoustically tuned neurons in the GP that are inhibited by tones are involved in the regulation of auditory cortical state, possibly promoting deactivation to unimportant sounds, and may be cholinergic in nature.  相似文献   

15.
PURPOSE: To review the spatiotemporal behaviours of central otolith neurons in decerebrate animals. DATA SOURCES: Laboratory of Neurophysiology, Department of Physiology, Faculty of Medicine, The University of Hong Kong. DATA EXTRACTION: Results of key research findings from 1992 to 1997. RESULTS: With constant velocity colckwise (CW) and counterclockwise (CCW) off-vertical axis rotations as stimuli to the otolith organs, neurons in the vestibular nuclei and medullary reticular formation showed characteristic spatiotemporal behavious. One-dimensional neurons showed symmetric and stable bidirectional response sensitivities (delta) to change in velocity while two-dimensional neurons showed asymmetric and variable delta to velocity. This CW-CCW asymmetry to bidirectional rotations may provide directional coding in the modulation of neural signals. Vestibular nuclear neurons also displayed distinct spontaneous discharge patterns at the stationary and earth-horizontal position, indicating that one- and two-dimensional neurons belong to physiologically distinct etities. These spatiotemporal behavious of the vestibular nuclear neurons were also shown to be precisely controlled by imputs from the vestibulocerebellum and/or bilateral otoliths. In both the vestibular nucleus and the reticular formation, the best response orientations of one-dimensional neurons and the orientations of the maximum response vector of two-dimensional neurons were found to point in all directions close to the horizontal plane, indicating that all head orientations on this plane are encoded across an ensemble of neurons. CONCLUSION: Otolith-evoked behaviours of the one-dimensional and two-dimensional neurons constitute an important element for the recognition of the direction and orientation of head motion in space.  相似文献   

16.
1. Responses of 73 fibers to dorso-ventral vibration were recorded in the saccular and utricular branchlets of Rana pipiens pipiens using a ventral approach. The saccular branchlet contained nearly exclusively vibration-sensitive fibers (33 out of 36) with best frequencies (BFs) between 10 and 70 Hz, whereas none of the 37 fibers encountered in the utricular branchlet responded to dorso-ventral vibrations. 2. Using a dorsal approach we recorded from the VIIIth nerve near its entry in the brainstem and analyzed responses to both sound and vibration stimuli for 65 fibers in R. pipiens pipiens and 25 fibers in Leptodactylus albilabris. The fibers were classified as amphibian papilla (AP), basilar papilla (BP), saccular or vestibular fibers based on their location in the nerve. Only AP and saccular fibers responded to vibrations. The AP-fibers responded to vibrations from 0.01 cm/s2 and to sound from 40 dB SPL by increasing their spike rate. Best frequencies (BFs) ranged from 60 to 900 Hz, and only fibers with BFs below 500 Hz responded to vibrations. The fibers had identical BF's for sound and vibration. The saccular fibers had BFs ranging from 10 to 80 Hz with 22 fibers having BFs at 40-50 Hz. The fibers responded to sound from 70 dB SPL and to vibrations from 0.01 cm/s2. 3. No differences in sensitivity, tuning or phase-locking were found between the two species, except that most BP-fibers in R. pipiens pipiens had BFs from 1.2 to 1.4 kHz, whereas those in L. albilabris had BFs from 2.0 to 2.2 kHz (matching the energy peak of L. albilabris' mating call). 4. The finding that the low-frequency amphibian papilla fibers are extremely sensitive to vibrations raises questions regarding their function in the behaving animal. They may be substrate vibration receptors, respond to sound-induced vibrations or bone-conducted sound.  相似文献   

17.
While chemical synapses are very plastic and modifiable by defined activity patterns, gap junctions, which mediate electrical transmission, have been classically perceived as passive intercellular channels. Excitatory transmission between auditory afferents and the goldfish Mauthner cell is mediated by coexisting gap junctions and glutamatergic synapses. Although an increased intracellular Ca2+ concentration is expected to reduce gap junctional conductance, both components of the synaptic response were instead enhanced by postsynaptic increases in Ca2+ concentration, produced by patterned synaptic activity or intradendritic Ca2+ injections. The synaptically induced potentiations were blocked by intradendritic injection of KN-93, a Ca2+/calmodulin-dependent kinase (CaM-K) inhibitor, or CaM-KIINtide, a potent and specific peptide inhibitor of CaM-KII, whereas the responses were potentiated by injection of an activated form of CaM-KII. The striking similarities of the mechanisms reported here with those proposed for long-term potentiation of mammalian glutamatergic synapses suggest that gap junctions are also similarly regulated and indicate a primary role for CaM-KII in shaping and regulating interneuronal communication, regardless of its modality.  相似文献   

18.
Acoustical stimulation causes displacement of the sensory hair cells relative to the otoliths of the fish inner ear. The swimbladder, transforming the acoustical pressure component into displacement, also contributes to the displacement of the hair cells. Together, this (generally) yields elliptical displacement orbits. Alternative mechanisms of fish directional hearing are proposed by the phase model, which requires a temporal neuronal code, and by the orbit model, which requires a spike density code. We investigated whether the directional selective response of auditory neurons in the midbrain torus semicircularis (TS; homologous to the inferior colliculus) is based on spike density and/or temporal encoding. Rainbow trout were mounted on top of a vibrating table that was driven in the horizontal plane to simulate sound source direction. Rectilinear and elliptical (or circular) motion was applied at 172 Hz. Generally, responses to rectilinear and elliptical/circular stimuli (irrespective of direction of revolution) were the same. The response of auditory neurons was either directionally selective (DS units, n = 85) or not (non-DS units, n = 106). The average spontaneous discharge rate of DS units was less than that of non-DS units. Most DS units (70%) had spontaneous activities < 1 spike per second. Response latencies (mode at 18 ms) were similar for both types of units. The response of DS units is transient (19%), sustained (34%), or mixed (47%). The response of 75% of the DS units synchronized to stimulus frequency, whereas just 23% of the non-DS responses did. Synchronized responses were measured at stimulus amplitudes as low as 0.5 nm (at 172 Hz), which is much lower than for auditory neurons in the medulla of the trout, suggesting strong convergence of VIIIth nerve input. The instant of firing of 42% of the units was independent of stimulus direction (shift <15 degrees), but for the other units, a direction dependent phase shift was observed. In the medial TS spatial tuning of DS units is in the rostrocaudal direction, whereas in the lateral TS all preferred directions are present. On average, medial DS units have a broader directional selectivity range, are less often synchronized, and show a smaller shift of the instant of firing as a function of stimulus direction than lateral DS units. DS response characteristics are discussed in relation to different hypotheses. We conclude that the results are more in favor of the phase model.  相似文献   

19.
This study describes the discharges of central units in the medulla of the goldfish, Carassius auratus, to hydrodynamic stimuli received by the lateral line. We stimulated the animal with a small object moving in the water and recorded activity of 85 medullary lateral line units in response to different motion directions and to various object distances, velocities, accelerations and sizes. All but one unit increased discharge rate when the moving object passed the fish laterally. Five response types were distinguished based on temporal patterns of unit responses. Ten units were recorded which encoded motion direction by different temporal discharge patterns. In general, discharge rates decreased when object distance was increased and when object speed was decreased. When object size was decreased, discharge rates decreased systematically in one group of units, but they were comparable for all but the smallest object tested in a second group of units. Units responded about equally well whether an object was moved at a constant velocity or was accelerated when it passed the fish. The data indicate that medullary lateral line units in the goldfish can encode motion direction but are not tuned to other aspects of an object moving in the water. The functional properties of units in the medulla of goldfish are similar to those reported for medullary units in the catfish Ancistrus sp., suggesting that the central mechanisms for processing complex hydrodynamic stimuli may be quite similar in fish species that occupy habitats with different hydrodynamic conditions.  相似文献   

20.
Long-term potentiation (LTP), the increase in synaptic strength evoked by high-frequency stimulation, is often considered to be a cellular model for learning and memory. The validity of this model depends on the assumptions that physiological stimuli can induce LTP in vivo and that the resulting synaptic modifications correlate with behavioural changes. However, modifiable synapses are generally embedded deep in complex circuits. In contrast, the goldfish Mauthner (M)-cell and its afferent synapses are easily accessible for electrophysiological studies, and firing of this neuron is sufficient to trigger fast escape behaviour in response to sudden stimuli. We have previously shown that tetanic stimulation can induce LTP of the feedforward inhibitory synapses that control the excitability of the M-cell. Here we report that natural sensory stimulation can induce potentiation of this inhibitory connection that resembles the LTP induced by afferent tetanization. Furthermore, comparable acoustic stimulation produced a parallel decrease in the probability of the sound-evoked escape reflex. Thus we demonstrate for the first time, to our knowledge, a behavioural role for the long-term synaptic strengthening of inhibitory synapses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号