首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an edge detection method based on mathematical morphology. The proposed scheme consists of four steps: preprocessing, edge extraction, edge decision, and postprocessing. In the preprocessing step, a morphological central transformation is applied to remove noise. In the edge extraction and decision steps, a morphological edge extractor is designed to estimate the edge information of an image, and an edge decision criterion is followed to determine whether a pixel is an edge or not. In the postprocessing step, the morphological hit-or-miss transformation is utilized to improve the correctness of the detected edges. It is proved theoretically for the correctness and effectiveness for detecting ideal edges. Experimental results show that the proposed method works well on both artificial and real images. The text was submitted by the authors in English. Chin-Pan Huang was born in 1959 in Taiwan, Republic of China. He received the B.S. and M.S. degrees in electrical engineering from Chung Cheng Institute of Technology, Taiwan, in 1981 and in 1985, respectively. In 1996, he received the Ph.D. degree in electrical engineering from the University of Pittsburgh in the United States. From 1996 to 2002, he was an associate scientist of the Electronic System Division in Chung Shan Institute of Science and Technology. He then joined the Department of Computer and Communication Engineering at Ming Chuan University in August 2002 and is currently an assistant professor there. His recent research interests include data compression, computer vision, digital image processing, and pattern recognition. Ran-Zan Wang was born in 1972 in Fukien, Republic of China. He received his B.S. degree in computer engineering and science in 1994 and M.S. degree in electrical engineering and computer science in 1996, both from Yuan-Ze University. In 2001, he received his Ph.D. degree in computer and information science from National Chiao Tung University. In 2001–2002, he was an assistant professor at the Department of Computer Engineering at the Van Nung Institute of Technology. He joined the Department of Computer and Communication Engineering at Ming Chuan University in August 2002 and is currently an assistant professor there. His recent research interests include data hiding and digital watermarking, image processing, and pattern recognition. Dr. Wang is a member of the Phi Tau Phi Scholastic Honor Society.  相似文献   

2.
This paper investigates the robust H∞ filtering problem for uncertain two-dimensional (2D) systems described by the Roesser model. The parameter uncertainties considered in this paper are assumed to be of polytopie type. A new structured polynomi-ally parameter-dependent method is utilized, which is based on homogeneous polynomially parameter-dependent matrices of arbitrary degree. The proposed method includes results in the quadratic framework and the linearly parameter-dependent framework as special cases for zeroth degree and first degree, respectively. A numerical example illustrates the feasibility and advantage of the proposed filter design methods.  相似文献   

3.
Fairness and hyperfairness in multi-party interactions   总被引:1,自引:0,他引:1  
Summary In this paper, a new fairness notion is proposed for languages withmulti-party interactions as the sole interprocess synchronization and communication primitive. The main advantage of this fairness notion is the elimination of starvation occurring solely due to race conditions (i.e., ordering of independent actions). Also, this is the first fairness notion for such languages which is fully adequate with respect to the criteria presented in [2]. The paper defines the notion, proves its properties, and presents examples of its usefulness. Orna Grumberg received her B.Sc. degree, M.Sc. and Ph.D. in the Computer Science Department at the Technion—Israel Institute of Technology. Since 1984 she is a faculty member in the Computer Science Department at the Technion. Her research interests include verification of distributed systems, computer-aided verification, model checking, temporal logics and automata. Paul Attie received a B.A. degree in engineering science from the University of Oxford, and an M.Sc. degree in computer science from the University of London. Since 1986, Paul has been with the Microelectronics and Computer Technology Corporation, where he is currently a member of technical staff. He is also a candidate for the Ph.D. in computer science degree at the University of Texas at Austin. His research interests include temporal logic, fairness, algebraic process theory, formal semantics, and concurrent program verification.The photograph and autobiography of Dr. Nissim Francez were published in Volume 2, Issue No. 4, 1988 on page 226  相似文献   

4.
This paper presents a test resource partitioning technique based on an efficient response compaction design called quotient compactor(q-Compactor). Because q-Compactor is a single-output compactor, high compaction ratios can be obtained even for chips with a small number of outputs. Some theorems for the design of q-Compactor are presented to achieve full diagnostic ability, minimize error cancellation and handle unknown bits in the outputs of the circuit under test (CUT). The q-Compactor can also be moved to the load-board, so as to compact the output response of the CUT even during functional testing. Therefore, the number of tester channels required to test the chip is significantly reduced. The experimental results on the ISCAS ‘89 benchmark circuits and an MPEG 2 decoder SoC show that the proposed compactionscheme is very efficient.  相似文献   

5.
It is likely that customers issue requests based on out-of-date information in e-commerce application systems. Hence, the transaction failure rates would increase greatly. In this paper, we present a preference update model to address this problem. A preference update is an extended SQL update statement where a user can request the desired number of target data items by specifying multiple preferences. Moreover, the preference update allows easy extraction of criteria from a set of concurrent requests and, hence, optimal decisions for the data assignments can be made. We propose a group evaluation strategy for preference update processing in a multidatabase environment. The experimental results show that the group evaluation can effectively increase the customer satisfaction level with acceptable cost. Peng Li is the Chief Software Architect of didiom LLC. Before that, he was a visiting assistant professor of computer science department in Western Kentucky University. He received his Ph.D. degree of computer science from the University of Texas at Dallas. He also holds a B.Sc. and M.S. in Computer Science from the Renmin University of China. His research interests include database systems, database security, transaction processing, distributed and Internet computer and E-commerce. Manghui Tu received a Bachelor degree of Science from Wuhan University, P.R. China in 1996, and a Master Degree in Computer Science from the University of Texas at Dallas 2001. He is currently working toward the PhD degree in the Department of Computer Science at the University of Texas at Dallas. Mr. Tu’s research interests include distributed systems, grid computing, information security, mobile computing, and scientific computing. His PhD research work focus on the data management in secure and high performance data grid. He is a student member of the IEEE. I-Ling Yen received her BS degree from Tsing-Hua University, Taiwan, and her MS and PhD degrees in Computer Science from the University of Houston. She is currently an Associate Professor of Computer Science at the University of Texas at Dallas. Dr. Yen’s research interests include fault-tolerant computing, security systems and algorithms, distributed systems, Internet technologies, E-commerce, and self-stabilizing systems. She had published over 100 technical papers in these research areas and received many research awards from NSF, DOD, NASA, and several industry companies. She has served as Program Committee member for many conferences and Program Chair/Co-Chair for the IEEE Symposium on Application-Specific Software and System Engineering & Technology, IEEE High Assurance Systems Engineering Symposium, IEEE International Computer Software and Applications Conference, and IEEE International Symposium on Autonomous Decentralized Systems. She is a member of the IEEE. Zhonghang Xia received the B.S. degree in applied mathematics from Dalian University of Technology in 1990, the M.S. degree in Operations Research from Qufu Normal University in 1993, and the Ph.D. degree in computer science from the University of Texas at Dallas in 2004. He is now an assistant professor in the Department of Computer Science, Western Kentucky University, Bowling Green, KY. His research interests are in the area of multimedia computing and networking, distributed systems, and data mining.  相似文献   

6.
Text extraction and enhancement of binary images using cellular automata   总被引:1,自引:1,他引:0  
Text characters embedded in images represent a rich source of information for content-based indexing and retrieval applications. However, these text characters are difficult to be detected and recognized due to their various sizes, grayscale values, and complex backgrounds. Existing methods cannot handle well those texts with different contrast or embedded in a complex image background. In this paper, a set of sequential algorithms for text extraction and enhancement of image using cellular automata are proposed. The image enhancement includes gray level, contrast manipulation, edge detection, and filtering. First, it applies edge detection and uses a threshold to filter out for low-contrast text and simplify complex background of high-contrast text from binary image. The proposed algorithm is simple and easy to use and requires only a sample texture binary image as an input. It generates textures with perceived quality, better than those proposed by earlier published techniques. The performance of our method is demonstrated by presenting experimental results for a set of text based binary images. The quality of thresholding is assessed using the precision and recall analysis of the resultant text in the binary image.  相似文献   

7.
We study the relationships between a number of behavioural notions that have arisen in the theory of distributed computing. In order to sharpen the under-standing of these relationships we apply the chosen behavioural notions to a basic net-theoretic model of distributed systems called elementary net systems. The behavioural notions that are considered here are trace languages, non-sequential processes, unfoldings and event structures. The relationships between these notions are brought out in the process of establishing that for each elementary net system, the trace language representation of its behaviour agrees in a strong way with the event structure representation of its behaviour. M. Nielsen received a Master of Science degree in mathematics and computer science in 1973, and a Ph.D. degree in computer science in 1976 both from Aarhus University, Denmark. He has held academic positions at Department of Computer Science, Aarhus University, Denmark since 1976, and was visiting researcher at Computer Science Department, University of Edinburgh, U.K., 1977–79, and Computer Laboratory, Cambridge University, U.K., 1986. His research interest is in the theory of distributed computing. Grzegorz Rozenberg received a master of engineering degree from the Department of Electronics (section computers) of the Technical University of Warsaw in 1964 and a Ph.D. in mathematics from the Institute of Mathematics of the Polish Academy of Science in 1968. He has held acdeemic positions at the Institute of Mathematics of the Polish Academy of Science, the Department of Mathematics of Utrecht University, the Department of Computer Science at SUNY at Buffalo, and the Department of Mathematics of the University of Antwerp. He is currently Professor at the Department of Computer Science of Leiden University and Adjoint Professor at the Department of Computer Science of the University of Colorado at Boulder. His research interests include formal languages and automata theory, theory of graph transformations, and theory of concurrent systems. He is currently President of the European Association for Theoretical Computer Science (EATCS). P.S. Thiagarajan received the Bachelor of Technology degree from the Indian Institute of Technology, Madras, India in 1970. He was awarded the Ph.D. degree by Rice University, Houston Texas, U.S.A, in 1973. He has been a Research Associate at the Massachusetts Institute of Technology, Cambridge a Staff Scientist at the Geosellschaft für Mathematik und Datenverarbeitung, St. Augustin, a Lektor at Århus University, Århus and an Associate Professor at the Institute of Mathematical Sciences, Madras. He is currently a Professor at the School of Mathematics, SPIC Science Foundation, Madras. He research intest is in the theory of distributed computing.  相似文献   

8.
In this paper an evolutionary classifier fusion method inspired by biological evolution is presented to optimize the performance of a face recognition system. Initially, different illumination environments are modeled as multiple contexts using unsupervised learning and then the optimized classifier ensemble is searched for each context using a Genetic Algorithm (GA). For each context, multiple optimized classifiers are searched; each of which are referred to as a context based classifier. An evolutionary framework comprised of a combination of these classifiers is then applied to optimize face recognition as a whole. Evolutionary classifier fusion is compared with the simple adaptive system. Experiments are carried out using the Inha database and FERET database. Experimental results show that the proposed evolutionary classifier fusion method gives superior performance over other methods without using evolutionary fusion. Recommended by Guest Editor Daniel Howard. This work was supported by INHA UNIVERSITY Research Grant. Zhan Yu received the B.E. degree in Software Engineering from Xiamen University, China, in 2008. He is currently a master student in Intelligent Technology Lab, Computer and Information Department, Inha University, Korea. He has research interests in image processing, pattern recognition, computer vision, machine learning and statistical inference and computating. Mi Young Nam received the B.Sc. and M.Sc. degrees in Computer Science from the University of Silla Busan, Korea in 1995 and 2001 respectively and the Ph.D. degree in Computer Science & Engineering from the University of Inha, Korea in 2006. Currently, She is Post-Doctor course in Intelligent Technology Laboratory, Inha University, Korea. She’s research interest includes biometrics, pattern recognition, computer vision, image processing. Suman Sedai received the M.S. degree in Software Engineering from Inha University, China, in 2008. He is currently a Doctoral course in Western Australia University, Australia. He has research interests in image processing, pattern recognition, computer vision, machine learning. Phill Kyu Rhee received the B.S. degree in Electrical Engineering from the Seoul University, Seoul, Korea, the M.S. degree in Computer Science from the East Texas State University, Commerce, TX, and the Ph.D. degree in Computer Science from the University of Louisiana, Lafayette, LA, in 1982, 1986, and 1990 respectively. During 1982–1985 he was working in the System Engineering Research Institute, Seoul, Korea as a research scientist. In 1991 he joined the Electronic and Telecommunication Research Institute, Seoul, Korea, as a Senior Research Staff. Since 1992, he has been an Associate Professor in the Department of Computer Science and Engineering of the Inha University, Incheon, Korea and since 2001, he is a Professor in the same department and university. His current research interests are pattern recognition, machine intelligence, and parallel computer architecture. dr. rhee is a Member of the IEEE Computer Society and KISS (Korea Information Science Society).  相似文献   

9.
The Multi-Agent Distributed Goal Satisfaction (MADGS) system facilitates distributed mission planning and execution in complex dynamic environments with a focus on distributed goal planning and satisfaction and mixed-initiative interactions with the human user. By understanding the fundamental technical challenges faced by our commanders on and off the battlefield, we can help ease the burden of decision-making. MADGS lays the foundations for retrieving, analyzing, synthesizing, and disseminating information to commanders. In this paper, we present an overview of the MADGS architecture and discuss the key components that formed our initial prototype and testbed. Eugene Santos, Jr. received the B.S. degree in mathematics and Computer science and the M.S. degree in mathematics (specializing in numerical analysis) from Youngstown State University, Youngstown, OH, in 1985 and 1986, respectively, and the Sc.M. and Ph.D. degrees in computer science from Brown University, Providence, RI, in 1988 and 1992, respectively. He is currently a Professor of Engineering at the Thayer School of Engineering, Dartmouth College, Hanover, NH, and Director of the Distributed Information and Intelligence Analysis Group (DI2AG). Previously, he was faculty at the Air Force Institute of Technology, Wright-Patterson AFB and the University of Connecticut, Storrs, CT. He has over 130 refereed technical publications and specializes in modern statistical and probabilistic methods with applications to intelligent systems, multi-agent systems, uncertain reasoning, planning and optimization, and decision science. Most recently, he has pioneered new research on user and adversarial behavioral modeling. He is an Associate Editor for the IEEE Transactions on Systems, Man, and Cybernetics: Part B and the International Journal of Image and Graphics. Scott DeLoach is currently an Associate Professor in the Department of Computing and Information Sciences at Kansas State University. His current research interests include autonomous cooperative robotics, adaptive multiagent systems, and agent-oriented software engineering. Prior to coming to Kansas State, Dr. DeLoach spent 20 years in the US Air Force, with his last assignment being as an Assistant Professor of Computer Science and Engineering at the Air Force Institute of Technology. Dr. DeLoach received his BS in Computer Engineering from Iowa State University in 1982 and his MS and PhD in Computer Engineering from the Air Force Institute of Technology in 1987 and 1996. Michael T. Cox is a senior scientist in the Intelligent Distributing Computing Department of BBN Technologies, Cambridge, MA. Previous to this position, Dr. Cox was an assistant professor in the Department of Computer Science & Engineering at Wright State University, Dayton, Ohio, where he was the director of Wright State’s Collaboration and Cognition Laboratory. He received his Ph.D. in Computer Science from the Georgia Institute of Technology, Atlanta, in 1996 and his undergraduate from the same in 1986. From 1996 to 1998, he was a postdoctoral fellow in the Computer Science Department at Carnegie Mellon University in Pittsburgh working on the PRODIGY project. His research interests include case-based reasoning, collaborative mixed-initiative planning, intelligent agents, understanding (situation assessment), introspection, and learning. More specifically, he is interested in how goals interact with and influence these broader cognitive processes. His approach to research follows both artificial intelligence and cognitive science directions.  相似文献   

10.
A Horn definition is a set of Horn clauses with the same predicate in all head literals. In this paper, we consider learning non-recursive, first-order Horn definitions from entailment. We show that this class is exactly learnable from equivalence and membership queries. It follows then that this class is PAC learnable using examples and membership queries. Finally, we apply our results to learning control knowledge for efficient planning in the form of goal-decomposition rules. Chandra Reddy, Ph.D.: He is currently a doctoral student in the Department of Computer Science at Oregon State University. He is completing his Ph.D. on June 30, 1998. His dissertation is entitled “Learning Hierarchical Decomposition Rules for Planning: An Inductive Logic Programming Approach.” Earlier, he had an M. Tech in Artificial Intelligence and Robotics from University of Hyderabad, India, and an M.Sc.(tech) in Computer Science from Birla Institute of Technology and Science, India. His current research interests broadly fall under machine learning and planning/scheduling—more specifically, inductive logic programming, speedup learning, data mining, and hierarchical planning and optimization. Prasad Tadepalli, Ph.D.: He has an M.Tech in Computer Science from Indian Institute of Technology, Madras, India and a Ph.D. from Rutgers University, New Brunswick, USA. He joined Oregon State University, Corvallis, as an assistant professor in 1989. He is now an associate professor in the Department of Computer Science of Oregon State University. His main area of research is machine learning, including reinforcement learning, inductive logic programming, and computational learning theory, with applications to classification, planning, scheduling, manufacturing, and information retrieval.  相似文献   

11.
The paper proposes a progressive viewing method useful in sharing a sensitive image. As in visual cryptography, this method characterizes its ability to recover the image by stacking transparencies without any computation. However, the method balances the sensitivity and the daily-processing convenience of the image. The text was submitted by the authors in English. Wen-Pinn Fang was born in 1971 in Taiwan, Republic of China. He received his BS degree in mechanical engineering from National Sun-Yet-Sans University in 1994, and MS degree in mechanical engineering from National Chiao Tung University in 1998. In 2006 he received his PhD in Computer Science Department of National Chiao Tung University. His recent research interests include image sharing and image processing. Ja-Chen Lin was born in 1955 in Taiwan, Republic of China. He received his BS degree in computer science in 1977 and MS degree in applied mathematics in 1979, both from National Chiao Tung University, Taiwan. In 1988 he received his PhD in mathematics from Purdue University, United States. In 1981–1982, he was an instructor at National Chiao Tung University. From 1984 to 1988, he was a graduate instructor at Purdue University. He joined the Department of Computer and Information Science at National Chiao Tung University in August 1988 and is currently a professor there. His recent research interests include pattern recognition and image processing. Dr. Lin is a member of the Phi-Tau-Phi Scholastic Honor Society.  相似文献   

12.
Information service plays a key role in grid system, handles resource discovery and management process. Employing existing information service architectures suffers from poor scalability, long search response time, and large traffic overhead. In this paper, we propose a service club mechanism, called S-Club, for efficient service discovery. In S-Club, an overlay based on existing Grid Information Service (GIS) mesh network of CROWN is built, so that GISs are organized as service clubs. Each club serves for a certain type of service while each GIS may join one or more clubs. S-Club is adopted in our CROWN Grid and the performance of S-Club is evaluated by comprehensive simulations. The results show that S-Club scheme significantly improves search performance and outperforms existing approaches. Chunming Hu is a research staff in the Institute of Advanced Computing Technology at the School of Computer Science and Engineering, Beihang University, Beijing, China. He received his B.E. and M.E. in Department of Computer Science and Engineering in Beihang University. He received the Ph.D. degree in School of Computer Science and Engineering of Beihang University, Beijing, China, 2005. His research interests include peer-to-peer and grid computing; distributed systems and software architectures. Yanmin Zhu is a Ph.D. candidate in the Department of Computer Science, Hong Kong University of Science and Technology. He received his B.S. degree in computer science from Xi’an Jiaotong University, Xi’an, China, in 2002. His research interests include grid computing, peer-to-peer networking, pervasive computing and sensor networks. He is a member of the IEEE and the IEEE Computer Society. Jinpeng Huai is a Professor and Vice President of Beihang University. He serves on the Steering Committee for Advanced Computing Technology Subject, the National High-Tech Program (863) as Chief Scientist. He is a member of the Consulting Committee of the Central Government’s Information Office, and Chairman of the Expert Committee in both the National e-Government Engineering Taskforce and the National e-Government Standard office. Dr. Huai and his colleagues are leading the key projects in e-Science of the National Science Foundation of China (NSFC) and Sino-UK. He has authored over 100 papers. His research interests include middleware, peer-to-peer (P2P), grid computing, trustworthiness and security. Yunhao Liu received his B.S. degree in Automation Department from Tsinghua University, China, in 1995, and an M.A. degree in Beijing Foreign Studies University, China, in 1997, and an M.S. and a Ph.D. degree in computer science and engineering at Michigan State University in 2003 and 2004, respectively. He is now an assistant professor in the Department of Computer Science and Engineering at Hong Kong University of Science and Technology. His research interests include peer-to-peer computing, pervasive computing, distributed systems, network security, grid computing, and high-speed networking. He is a senior member of the IEEE Computer Society. Lionel M. Ni is chair professor and head of the Computer Science and Engineering Department at Hong Kong University of Science and Technology. Lionel M. Ni received the Ph.D. degree in electrical and computer engineering from Purdue University, West Lafayette, Indiana, in 1980. He was a professor of computer science and engineering at Michigan State University from 1981 to 2003, where he received the Distinguished Faculty Award in 1994. His research interests include parallel architectures, distributed systems, high-speed networks, and pervasive computing. A fellow of the IEEE and the IEEE Computer Society, he has chaired many professional conferences and has received a number of awards for authoring outstanding papers.  相似文献   

13.
In this paper, we propose a new topology called theDual Torus Network (DTN) which is constructed by adding interleaved edges to a torus. The DTN has many advantages over meshes and tori such as better extendibility, smaller diameter, higher bisection width, and robust link connectivity. The most important property of the DTN is that it can be partitioned into sub-tori of different sizes. This is not possible for mesh and torus-based systems. The DTN is investigated with respect to allocation, embedding, and fault-tolerant embedding. It is shown that the sub-torus allocation problem in the DTN reduces to the sub-mesh allocation problem in the torus. With respect to embedding, it is shown that a topology that can be embedded into a mesh with dilation δ can also be embedded into the DTN with less dilation. In fault-tolerant embedding, a fault-tolerant embedding method based on rotation, column insertion, and column skip is proposed. This method can embed any rectangular grid into its optimal square DTN when the number of faulty nodes is fewer than the number of unused nodes. In conclusion, the DTN is a scalable topology well-suited for massively parallel computation. Sang-Ho Chae, M.S.: He received the B.S. in the Computer Science and Engineering from the Pohang University of Science and Technology (POSTECH) in 1994, and the M.E. in 1996. Since 1996, he works as an Associate Research Engineer in the Central R&D Center of the SK Telecom Co. Ltd. He took part in developing SK Telecom Short Message Server whose subscribers are now over 3.5 million and Advanced Paging System in which he designed and implemented high availability concepts. His research interests are the Fault Tolerance, Parallel Processing, and Parallel Topolgies. Jong Kim, Ph.D.: He received the B.S. degree in Electronic Engineering from Hanyang University, Seoul, Korea, in 1981, the M.S. degree in Computer Science from the Korea Advanced Institute of Science and Technology, Seoul, Korea, in 1983, and the Ph.D. degree in Computer Engineering from Pennsylvania State University, U.S.A., in 1991. He is currently an Associate Professor in the Department of Computer Science and Engineering, Pohang University of Science and Technology, Pohang, Korea. Prior to this appointment, he was a research fellow in the Real-Time Computing Laboratory of the Department of Electrical Engineering and Computer Science at the University of Michigan from 1991 to 1992. From 1983 to 1986, he was a System Engineer in the Korea Securities Computer Corporation, Seoul, Korea. His major areas of interest are Fault-Tolerant Computing, Performance Evaluation, and Parallel and Distributed Computing. Sung Je Hong, Ph.D.: He received the B.S. degree in Electronics Engineering from Seoul National University, Korea, in 1973, the M.S. degree in Computer Science from Iowa State University, Ames, U.S.A., in 1979, and the Ph.D. degree in Computer Science from the University of Illinois, Urbana, U.S.A., in 1983. He is currently a Professor in the Department of Computer Science and Engineering, Pohang University of Science and Technology, Pohang, Korea. From 1983 to 1989, he was a staff member of Corporate Research and Development, General Electric Company, Schenectady, NY, U.S.A. From 1975 to 1976, he was with Oriental Computer Engineering, Korea, as a Logic Design Engineer. His current research interest includes VLSI Design, CAD Algorithms, Testing, and Parallel Processing. Sunggu Lee, Ph.D.: He received the B.S.E.E. degree with highest distinction from the University of Kansas, Lawrence, in 1985 and the M.S.E. and Ph.D. degrees from the University of Michigan, Ann Arbor, in 1987 and 1990, respectively. He is currently an Associate Professor in the Department of Electronic and Electrical Engineering at the Pohang University of Science and Technology (POSTECH), Pohang, Korea. Prior to this appointment, he was an Associate Professor in the Department of Electrical Engineering at the University of Delaware in Newark, Delaware, U.S.A. From June 1997 to July 1998, he spent one year as a Visiting Scientist at the IBM T. J. Watson Research Center. His research interests are in Parallel, Distributed, and Fault-Tolerant Computing. Currently, his main research focus is on the high-level and low-level aspects of Inter-Processor Communications for Parallel Computers.  相似文献   

14.
In this paper, combinatorial design followed by randomized merging strategy is applied to key pre-distribution in sensor nodes. A transversal design is used to construct a (v, b, r, k) configuration and then randomly selected blocks are merged to form the sensor nodes. We present detailed mathematical analysis of the number of nodes, number of keys per node and the probability that a link gets affected if certain number of nodes are compromised. The technique is tunable to user requirements and it also compares favourably with state of the art design strategies. An important feature of our design is the presence of more number of common keys between any two nodes. Further, we study the situation when properly chosen blocks are merged to form sensor nodes such that the number of intra-node common key is minimized. We present a basic heuristic for this approach and show that it provides slight improvement in terms of certain parameters than our basic random merging strategy. This paper is an extended and revised version of the paper presented in 8th Information Security Conference, ISC'05, pp. 89–103, Lecture Notes in Computer Science, vol. 3650, Springer Verlag. Dibyendu Chakrabarti received his Master of Technology in Computer Science in the year 1998 from the Indian Statistical Institute, Kolkata. Currently he is pursuing his Ph.D. from the Indian Statistical Institute, Kolkata. He is working in the area of Sensor Networks. Subhamoy Maitra received his Bachelor of Electronics and Telecommunication Engineering degree in the year 1992 from Jadavpur University, Kolkata and Master of Technology in Computer Science in the year 1996 from the Indian Statistical Institute, Kolkata. He has completed Ph.D. from the Indian Statistical Institute in 2001. Currently he is an Associate Professor at the Indian Statistical Institute. His research interest is in Cryptology, Digital Watermarking, and Sensor Networks. Prof. Bimal Roy obtained his Master's degree from the Indian Statistical Institute, Calcutta, India in 1979 and Ph.D. from University of Waterloo, Canada in 1982. He is currently a professor at the Indian Statistical Institute, Kolkata. His research area includes Cryptography, Security, Combinatorics etc. His special topics of interest are: Sensor Networks, Visual Cryptography, Hash Functions and Stream Ciphers.  相似文献   

15.
This paper deals with the surveillance problem of computing the motions of one or more robot observers in order to maintain visibility of one or several moving targets. The targets are assumed to move unpredictably, and the distribution of obstacles in the workspace is assumed to be known in advance. Our algorithm computes a motion strategy by maximizing the shortest distance to escape—the shortest distance the target must move to escape an observer's visibility region. Since this optimization problem is intractable, we use randomized methods to generate candidate surveillance paths for the observers. We have implemented our algorithms, and we provide experimental results using real mobile robots for the single target case, and simulation results for the case of two targets-two observers. Rafael Murrieta-Cid received the B.S degree in Physics Engineering (1990), and the M.Sc. degree in Automatic Manufacturing Systems (1993), both from “Instituto Tecnológico y de Estudios Superiores de Monterrey” (ITESM) Campus Monterrey. He received his Ph.D. from the “Institut National Polytechnique” (INP) of Toulouse, France (1998). His Ph.D research was done in the Robotics and Artificial Intelligence group of the LAAS/CNRS. In 1998–1999, he was a postdoctoral researcher in the Computer Science Department at Stanford University. From January 2000 to July 2002 he was an assistant professor in the Electrical Engineering Department at ITESM Campus México City, México. In 2002–2004, he was working as a postdoctoral research associate in the Beckman Institute and Department of Electrical and Computer Engineering of the University of Illinois at Urbana-Champaign. Since August 2004, he is director of the Mechatronics Research Center in the ITESM Campus Estado de México, México. He is mainly interested in sensor-based robotics motion planning and computer vision. Benjamin Tovar received the B.S degree in electrical engineering from ITESM at Mexico City, Mexico, in 2000, and the M.S. in electrical engineering from University of Illinois, Urbana-Champaign, USA, in 2004. Currently (2005) he is pursuing the Ph.D degree in Computer Science at the University of Illinois. Prior to M.S. studies he worked as a research assistant at Mobile Robotics Laboratory at ITESM Mexico City. He is mainly interested in motion planning, visibility-based tasks, and minimal sensing for robotics. Seth Hutchinson received his Ph. D. from Purdue University in West Lafayette, Indiana in 1988. He spent 1989 as a Visiting Assistant Professor of Electrical Engineering at Purdue University. In 1990 Dr. Hutchinson joined the faculty at the University of Illinois in Urbana-Champaign, where he is currently a Professor in the Department of Electrical and Computer Engineering, the Coordinated Science Laboratory, and the Beckman Institute for Advanced Science and Technology. Dr. Hutchinson is currently a senior editor of the IEEE Transactions on Robotics and Automation. In 1996 he was a guest editor for a special section of the Transactions devoted to the topic of visual servo control, and in 1994 he was co-chair of an IEEE Workshop on Visual Servoing. In 1996 and 1998 he co-authored papers that were finalists for the King-Sun Fu Memorial Best Transactions Paper Award. He was co-chair of IEEE Robotics and Automation Society Technical Committee on Computer and Robot Vision from 1992 to 1996, and has served on the program committees for more than thirty conferences related to robotics and computer vision. He has published more than 100 papers on the topics of robotics and computer vision.  相似文献   

16.
Summary Algorithms for mutual exclusion that adapt to the current degree of contention are developed. Afilter and a leader election algorithm form the basic building blocks. The algorithms achieve system response times that are independent of the total number of processes and governed instead by the current degree of contention. The final algorithm achieves a constant amortized system response time. Manhoi Choy was born in 1967 in Hong Kong. He received his B.Sc. in Electrical and Electronic Engineerings from the University of Hong Kong in 1989, and his M.Sc. in Computer Science from the University of California at Santa Barbara in 1991. Currently, he is working on his Ph.D. in Computer Science at the University of California at Santa Barbara. His research interests are in the areas of parallel and distributed systems, and distributed algorithms. Ambuj K. Singh is an Assistant Professor in the Department of Computer Science at the University of California, Santa Barbara. He received a Ph.D. in Computer Science from the University of Texas at Austin in 1989, an M.S. in Computer Science from Iowa State University in 1984, and a B.Tech. from the Indian Institute of Technology at Kharagpur in 1982. His research interests are in the areas of adaptive resource allocation, concurrent program development, and distributed shared memory.A preliminary version of the paper appeared in the 12th Annual ACM Symposium on Principles of Distributed ComputingWork supported in part by NSF grants CCR-9008628 and CCR-9223094  相似文献   

17.
The present contribution describes a potential application of Grid Computing in Bioinformatics. High resolution structure determination of biological specimens is critical in BioSciences to understanding the biological function. The problem is computational intensive. Distributed and Grid Computing are thus becoming essential. This contribution analyzes the use of Grid Computing and its potential benefits in the field of electron microscope tomography of biological specimens. Jose-Jesus Fernandez, Ph.D.: He received his M.Sc. and Ph.D. degrees in Computer Science from the University of Granada, Spain, in 1992 and 1997, respectively. He was a Ph.D. student at the Bio-Computing unit of the National Center for BioTechnology (CNB) from the Spanish National Council of Scientific Research (CSIC), Madrid, Spain. He became an Assistant Professor in 1997 and, subsequently, Associate Professor in 2000 in Computer Architecture at the University of Almeria, Spain. He is a member of the supercomputing-algorithms research group. His research interests include high performance computing (HPC), image processing and tomography. Jose-Roman Bilbao-Castro: He received his M.Sc. degree in Computer Science from the University of Almeria in 2001. He is currently a Ph.D. student at the BioComputing unit of the CNB (CSIC) through a Ph.D. CSIC-grant in conjuction with Dept. Computer Architecture at the University of Malaga (Spain). His current research interestsinclude tomography, HPC and distributed and grid computing. Roberto Marabini, Ph.D.: He received the M.Sc. (1989) and Ph.D. (1995) degrees in Physics from the University Autonoma de Madrid (UAM) and University of Santiago de Compostela, respectively. He was a Ph.D. student at the BioComputing Unit at the CNB (CSIC). He worked at the University of Pennsylvania and the City University of New York from 1998 to 2002. At present he is an Associate Professor at the UAM. His current research interests include inverse problems, image processing and HPC. Jose-Maria Carazo, Ph.D.: He received the M.Sc. degree from the Granada University, Spain, in 1981, and got his Ph.D. in Molecular Biology at the UAM in 1984. He left for Albany, NY, in 1986, coming back to Madrid in 1989 to set up the BioComputing Unit of the CNB (CSIC). He was involved in the Spanish Ministry of Science and Technology as Deputy General Director for Research Planning. Currently, he keeps engaged in his activities at the CNB, the Scientific Park of Madrid and Integromics S.L. Immaculada Garcia, Ph.D.: She received her B.Sc. (1977) and Ph.D. (1986) degrees in Physics from the Complutense University of Madrid and University of Santiago de Compostela, respectively. From 1977 to 1987 she was an Assistant professor at the University of Granada, from 1987 to 1996 Associate professor at the University of Almeria and since 1997 she is a Full Professor and head of Dept. Computer Architecture. She is head of the supercomputing-algorithms research group. Her research interest lies in HPC for irregular problems related to image processing, global optimization and matrix computation.  相似文献   

18.
This paper presents a built-in self-test(BIST) scheme for detecting all robustly testable multiple stuck-open faults confined to any single complex cell of a CMOS circuit.The test pattern generator(TPG) generates all n.2^n single-input-change(SIC) orderd test pairs design is universal,i.e.,independent of the structure and functionality of the CUT.A counter that counts the number of alternate transitions at the output of the CUT,is used as a signature analyzer(SA).The design of TPG and SA is simple and no special design-or synthesis-for-testability techniques and /or additional control lines are needed.  相似文献   

19.
Program transformation system based on generalized partial computation   总被引:1,自引:0,他引:1  
Generalized Partial Computation (GPC) is a program transformation method utilizing partial information about input data, abstract data types of auxiliary functions and the logical structure of a source program. GPC uses both an inference engine such as a theorem prover and a classical partial evaluator to optimize programs. Therefore, GPC is more powerful than classical partial evaluators but harder to implement and control. We have implemented an experimental GPC system called WSDFU (Waseda Simplify-Distribute-Fold-Unfold). This paper demonstrates the power of the program transformation system as well as its theorem prover and discusses some future works. Yoshihiko Futamura, Ph.D.: He is Professor of Department of Information and Computer Science and the director of the Institute for Software Production Technology (ISPT) of Waseda University. He received his BS in mathematics from Hokkaido University in 1965, MS in applied mathematics from Harvard University in 1972 and Ph.D. degree from Hokkaido University in 1985. He joined Hitachi Central Research Laboratory in 1965 and moved to Waseda University in 1991. He was a visiting professor of Uppsala University from 1985 to 1986 and a visiting scholar of Harvard University from 1988 to 1989. Automatic generation of computer programs and programming methodology are his main research fields. He is the inventor of the Futamura Projections in partial evaluation and ISO8631 PAD (Problem Analysis Diagram). Zenjiro Konishi: He is a visiting lecturer of Institute for Software Production Technology, Waseda University. He received his M. Sc. degree in mathematics from Waseda University in 1995. His research interests include automated theorem proving. He received JSSST Takahashi Award in 2001. He is a member of JSSST and IPSJ. Robert Glück, Ph.D., Habil.: He is an Associate Professor of Computer Science at the University of Copenhagen. He received his Ph.D. and Habilitation (venia docendi) from the Vienna University of Technology in 1991 and 1997. He was research assistant at the City University of New York and received twice the Erwin-Schrodinger-Fellowship of the Austrian Science Foundation (FWF). After being an Invited Fellow of the Japan Society for the Promotion of Science (JSPS), he is now funded by the PRESTO21 program for basic research of the Japan Science and Technology Corporation (JST) and located at Waseda University in Tokyo. His main research interests are advanced programming languages, theory and practice of program transformation, and metaprogramming.  相似文献   

20.
A Model for Slicing JAVA Programs Hierarchically   总被引:3,自引:0,他引:3       下载免费PDF全文
Program slicing can be effectively used to debug, test, analyze, understand and maintain objectoriented software. In this paper, a new slicing model is proposed to slice Java programs based on their inherent hierarchical feature. The main idea of hierarchical slicing is to slice programs in a stepwise way, from package level, to class level, method level, and finally up to statement level. The stepwise slicing algorithm and the related graph reachability algorithms are presented, the architecture of the Java program Analyzing TOol (JATO) based on hierarchical slicing model is provided, the applications and a small case study are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号