首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amyloid precursor protein (APP) of Alzheimer's disease is abundantly expressed in the platelet alpha-granule where its role remains unclear. This study describes a novel function for APP in regulating human platelet activation. Preincubation of platelet-rich plasma with recombinant secreted APP (sAPP) isoforms dose-dependently inhibited platelet aggregation and secretion induced by ADP or adrenaline. Similarly, sAPP potently inhibited low-dose thrombin-induced activation in washed platelet suspensions, indicating that the activity does not require plasma cofactors. There were no functional differences between sAPP forms with or without the Kunitz protease inhibitor domain or derived from either alpha- or beta-secretase cleavage. In fact, the N-terminal cysteine-rich region of APP (residues 18-194) was as effective as the entire sAPP region in the inhibition of platelet activation. The inhibitory activity of sAPP correlated with a significant reduction in the agonist-induced production of the arachidonic acid (AA) metabolites thromboxane B2 and prostaglandin E2. However, sAPP did not affect AA-induced platelet aggregation or secretion, indicating the enzymatic conversion of AA was not inhibited. The addition of a threshold dose of AA reversed the sAPP-inhibition of agonist-induced platelet activation. This suggests that sAPP decreases the availability of free AA, although the mechanism is not yet known. These data provide evidence that the release of sAPP upon platelet degranulation may result in negative feedback regulation during platelet activation.  相似文献   

2.
A novel protein, human X11-like (human X11L), contains a phosphotyrosine interaction (PI) domain and two PDZ domains and displays 55.2% amino acid homology with the human X11 (human X11). The PI domain of human X11L interacts with a sequence containing the NPXY motif found in the cytoplasmic domain of Alzheimer's amyloid precursor protein. A construct lacking the carboxyl-terminal domain, which comprises two PDZ domains (N + PI), enhances PI binding to APP, whereas another construct lacking an amino-terminal domain relative to PI domain (PI + C) suppresses PI binding to APP. Overexpression of full-length human X11L (N + PI + C) in cells that express APP695 stably decreased the secretion of Abeta40 but not that of Abeta42. However, overexpression of the PI domain alone and the N + PI construct in cells did not affect the secretion of Abeta despite their ability to bind to the cytoplasmic domain of Alzheimer's amyloid precursor protein. These observations suggest that the amino-terminal domain regulates PI binding to APP and that the carboxyl-terminal domain containing PDZ motifs is essential to modulate APP processing. Because expression of the human X11L gene is specific to brain, the present observations should contribute to shedding light on the molecular mechanism of APP processing in Alzheimer's disease.  相似文献   

3.
4.
Amyloid precursor protein (APP) is a secretory membrane-bound protein that undergoes restrictive proteolysis and degradation with a short life span in the constitutive secretory pathway or in the endosomal/lysosomal compartment. The degradation machinery, including cellular trafficking and the restrictive cleavage of APP, is poorly understood. To gain further insight into the intracellular degradation mechanism of APP, we searched for effector proteins that interact with APP. We found that a cytosolic molecular chaperon, Hsc73, effectively interacts with the cytoplasmic domain of APP in the presence of proteasome inhibitors. Hsc73 binds to the cytoplasmic domain near the post-transmembrane region of APP and not to the KFERQ-related sequence, KFFEQ, at the C-terminal tail that is assumed to be the selective targeting signal for lysosomal proteolysis. The amounts of Hsc73 that bind to several APP species such as those found in pathological Familial Alzheimer's disease (FAD), Swedish, or Dutch type mutation, are almost identical, suggesting that an abnormal conformation around the secretory cleavage site or a pathological imbalance in APP processing are not irrelevant to the efficiency of Hsc73 binding.  相似文献   

5.
Multiple lines of evidence suggest that increased production and/or deposition of the beta-amyloid peptide, derived from the amyloid precursor protein, contributes to Alzheimer's disease. A growing list of neurotransmitters, growth factors, cytokines, and hormones have been shown to regulate amyloid precursor protein processing. Although traditionally thought to be mediated by activation of protein kinase C, recent data have implicated other signaling mechanisms in the regulation of this process. Moreover, novel mechanisms of regulation involving cholesterol-, apolipoprotein E-, and stress-activated pathways have been identified. As the phenotypic changes associated with Alzheimer's disease encompass many of these signaling systems, it is relevant to determine how altered cell signaling may be contributing to increasing brain amyloid burden. We review the myriad ways in which first messengers regulate amyloid precursor protein catabolism as well as the signal transduction cascades that give rise to these effects.  相似文献   

6.
Alzheimer amyloid precursor protein (APP) is an integral membrane protein with a short cytoplasmic domain of 47 amino acids. It is hoped that identification of proteins that interact with the cytoplasmic domain will provide new insights into the physiological function of APP and, in turn, into the pathogenesis of Alzheimer's disease. To identify proteins that interact with the cytoplasmic domain of APP, we employed affinity chromatography using an immobilized synthetic peptide corresponding to residues 645-694 of APP695 and identified a protein of approximately 130 kDa in rat brain cytosol. Amino acid sequencing of the protein revealed the protein to be a rat homologue of monkey UV-DDB (UV-damaged DNA-binding protein, calculated molecular mass of 127 kDa). UV-DDB/p127 co-immunoprecipitated with APP using an anti-APP antibody from PC12 cell lysates. APP also co-immunoprecipitated with UV-DDB/p127 using an anti-UV-DDB/p127 antibody. These results indicate that UV-DDB/p127, which is present in the cytosolic fraction, forms a complex with APP through its cytoplasmic domain. In vitro binding experiments using a glutathione S-transferase-APP cytoplasmic domain fusion protein and several mutants indicated that the YENPTY motif within the APP cytoplasmic domain, which is important in the internalization of APP and amyloid beta protein secretion, may be involved in the interaction between UV-DDB/p127 and APP.  相似文献   

7.
A major hallmark of Alzheimer's disease (AD) is the presence of extracellular amyloid plaques consisting primarily of amyloid beta peptide (A beta) which is derived from a larger beta-amyloid precursor protein (APP). APP is processed via secretory and endosomal/lysosomal pathways by a group of proteases called secretases. During the processing of APP, the carboxy-terminal tail fragment has been suggested to remain within the cell. To investigate the fate of this fragment, we generated an antibody specific for a nine amino acid residue, the sequence of which was derived from the carboxy-terminal putative cytoplasmic tail of APP. Computer analysis of the entire APP gene, searching for regions of greatest antigenicity, surface probability, hydrophilicity, and presence of beta turns, indicated that the cytoplasmic tail region is an immunodominant region of APP. The peptide coupled to keyhole limpet hemocyanin protein, produced a very high titer antibody (1:1 x 10(6)). To evaluate the specificity of the antibody, immunoprecipitation of in vitro transcribed and translated DNA encoding the carboxy-terminal amino acids of APP in wheat germ extract was carried out. A single immunoprecipitated band of the correct size was seen by SDS-PAGE. The antibody was also able to specifically detect the accumulation of the stable C-terminal tail containing fragments of APP in neurites of the amygdala and hippocampus regions of the human brain tissue from AD subjects, but did not react with age-matched control normal brain tissue. The localization of the C-terminal tail of APP within the brain tissue of AD patients underscores the likely importance of the C-terminus in the pathogenesis of AD.  相似文献   

8.
To date, eleven independent early onset familial Alzheimer's disease (EOFAD) pedigrees with the 717Val-->Ile mutation of amyloid precursor protein (APP) gene have been identified. Interestingly, five pedigrees have been of Japanese origin. The apparent ethnic prediction of this mutation raises the possibility that there is a founder effect in Japan. If the hypothesis holds true, we can expect the presence of linkage disequilibrium at the APP locus. We did not, however, observe any significant linkage disequilibrium at any locus of APP or the adjacent GT12 locus in the five Japanese EOFAD probands with the 717Val-->Ile mutation. The result indicates that a founder effect would probably not be present in Japanese EOFAD pedigrees with the 717Val-->Ile mutation.  相似文献   

9.
We report Japanese siblings with the missense mutation 717Val --> Ile in the amyloid precursor protein. The maternal grandmother died of an unknown dementing disorder. The proband's mother had gradually increasing amnesia beginning at age 64, which was diagnosed as Alzheimer's disease (AD). She died in a psychiatric hospital (duration of illness: 16 years). Both the proband and her elder sister were affected at about age 55 years. Disturbances of memory, judgment, and emotion, as well as personality changes, occurred first, with dementia eventually predominating. The elder sister died of pneumonia (duration of illness: 9 years). The amyloid precursor protein (APP) gene was analyzed from each sibling. Genomic DNAs obtained from blood samples were amplified by the polymerase chain reaction (PCR) method. PCR products were digested with the restriction enzyme Bcl I. The resulting restriction fragment length polymorphisms (RFLPs) showed the missense mutation 717Val --> Ile in both patients, but not in a normal control. DNA sequencing showed the presence of the 2149G --> A missense mutation only in the patients. We conclude that this familial AD may originate from the missense mutation 717Val --> Ile in the amyloid precursor protein gene and that the clinical picture is typical of AD, except for normal-pressure hydrocephalus and psychiatric phenomena.  相似文献   

10.
Variation at the APOE gene locus has been shown to affect the risk for Alzheimer's disease. To gain deeper insight into the postulated apoE-mediated amyloid formation, we have characterized the three common apoE isoforms (apoE2, apoE3, and apoE4) regarding their binding to amyloid precursor protein (APP). We employed the yeast two-hybrid system and co-immunoprecipitation experiments in cell culture supernatants of COS-1 cells, ectopically expressing apoE isoforms and APP751 holoprotein or a COOH-terminal Abeta deletion mutant protein, designated APPtrunc. We found that all three apoE isoforms were able to bind APP751 holoprotein in an Abeta-independent fashion. The interacting domains could be mapped to the NH2 termini of APP (amino acids 1-207) and apoE (amino acids 1-191). As a functional consequence of this novel APP751 ectodomain-mediated apoE binding, the secretion of soluble APP751 is differentially affected by distinct apoE isoforms in vitro, suggesting a new "chaperon-like" mechanism by which apoE isoforms may modulate APP metabolism and consequently the risk for Alzheimer's disease.  相似文献   

11.
目的:观察硫化氢(H2S)对PC12细胞淀粉样前体蛋白(APP)代谢途径的影响,探讨可能的细胞信号机制.方法:用不同浓度硫氢化钠(NaHS,50、100和200 μmol·L-1)作用PC12细胞1和18 h,Western blotting法检测APP、C99、C83、磷脂酰肌醇-3激酶/丝氨酸苏氨酸蛋白激酶(PI3-K/Akt)及丝裂原活化蛋白激酶/细胞外信号调节激酶1/2(MAPK/ERK1/2)信号通路相关蛋白的水平;ELISA检测细胞培养液中Aβ42的水平.50 μmol·L-1 NaHS作用于PC12细胞前30 min加入PI3-K抑制剂LY294002(25和50 μmol·L-1)或 MAPK激酶(MEK)抑制剂PD98059(25和50 μmol·L-1),重复上述检测.各种检测实验均设正常对照组.结果:与正常对照组比较,50 μmol·L-1 NaHS组C99及Aβ42 水平降低(P<0.05),C83的表达提高(P<0.05),Akt及ERK1/2的磷酸化增加(P<0.05),而LY294002可抑制NaHS的上述作用,但PD98059不具有与LY294002类似的作用.结论:H2S能使APP的代谢向非淀粉样途径转变,其机制可能涉及PI3-K/Akt信号通路.  相似文献   

12.
The effect of the secretory form of amyloid precursor protein (sAPP) on synaptic transmission was examined by using developing neuromuscular synapses in Xenopus cell cultures. The frequency of spontaneous postsynaptic currents (SSCs) was reduced by the addition of sAPP, whereas the amplitude of impulse-evoked postsynaptic currents (ESCs) was increased by sAPP. These opposing effects on spontaneous versus evoked release were separated by using the specific domain of APP. The C-terminal fragment of sAPP (CAPP) only reduced SSC frequency and did not affect ESCs. By contrast, the N-terminal fragment of sAPP (NAPP) did not affect SSC frequency but did increase ESC amplitude. The reduction of SSC frequency by sAPP appears to be mediated by activation of potassium channels through a cGMP-dependent pathway, whereas the increase of ESC amplitude is mediated by a different pathway involving activation of protein kinase(s). These results suggest the potential role of sAPP as a modulator of synaptic activity by two specific domains.  相似文献   

13.
Alzheimer's disease amyloid precursor protein (APP) generates a beta-amyloid protein (A beta) that is a main component of the senile plaques found in the brains of Alzheimer's disease patients. APP is thought to undergo proteolysis via two different pathways, the amyloidogenic pathway which produces A beta, and the non-amyloidogenic pathway which releases a large N-terminal fragment into the medium. The proteases that mediate these processes remain unidentified. The physiological function of APP is not clear yet. Therefore, the cytoplasmic region of APP has attracted much interest, because this region is highly conserved among species, and members of the amyloid precursor-like protein (APLP) family. Several potentially functional sequences exist in the region, including signal sequences for protein sorting and a G0-protein binding sequence. We constructed two mutants, 695 deltaNPTY and 695 deltaGYEN. They lack potential endosome/lysosome targeting signals, NPTY and GY, in the cytoplasmic domain of APP695, respectively. The mutant APPs had longer half-lives and were secreted more easily into the medium than the wild type, suggesting that these sequences are important for the secretion and metabolism of APP.  相似文献   

14.
Amyloid precursor-like protein-2 (APLP-2) belongs to a family of homologous amyloid precursor-like proteins. In the present study we report on the expression and distribution of APLP-2 in fetal and adult human brain and in brains of patients with Alzheimer's disease. We demonstrate that APLP-2 mRNAs encoding isoforms predicted to undergo post-translational modification by chondroitin sulfate glycosaminoglycans are elevated in fetal and aging brains relative to the brains of young adults. Immunocytochemical labeling with APLP-2-specific antibodies demonstrates APLP-2 immunoreactivity in cytoplasmic compartments in neurons and astrocytes, in large part overlapping the distribution of the amyloid precursor protein. In Alzheimer's disease brain, APLP-2 antibodies also label a subset of neuritic plaques. APLP-2 immunoreactivity is particularly conspicuous in large dystrophic neurites that also label with antibodies specific for APP and chromogranin A. In view of the age-dependent increase in levels of chondroitin sulfate glycosaminoglycan-modified forms of APLP-2 in aging brain and the accumulation of APLP-2 in dystrophic presynaptic elements, we suggest that APLP-2 may play roles in neuronal sprouting or in the aggregation, deposition, and/or persistence of beta-amyloid deposits.  相似文献   

15.
In the brains of individuals with Alzheimer disease, senile plaques containing aggregates of beta-amyloid peptide, derived from the beta-amyloid precursor protein (APP), are seen in association with degenerating nerve terminals. It is not known whether the degenerating nerve terminals cause the formation of these aggregates or whether beta-amyloid peptide in the aggregates causes nerve-terminal degeneration. In the present study of rat brain, degeneration either of local neurons or of nerve terminals caused decreased levels of a neuron-enriched isoform of APP, increased levels of a glia-enriched isoform of APP, and increased levels of potentially amyloidogenic, as well as nonamyloidogenic, COOH-terminal fragments of APP. Our results demonstrate that neuronal degeneration affects APP processing and suggest that it may contribute to amyloid formation in mammalian brain.  相似文献   

16.
Previous reports have shown that exposure of vascular endothelial and smooth muscle cells to exogenous amyloid beta (Abeta) peptide results in cell damage and toxicity via oxidative injury. In this study we demonstrate that overexpression of the amyloid precursor protein (APP) is toxic to bovine aortic endothelial cells but not to bovine aortic smooth muscle cells. Intracellular coexpression of the free radical scavenger proteins metallothionein or MnSOD abolished the toxic effect of APP overexpression in endothelial cells. Our results demonstrate that endothelial cells are specifically susceptible to intracellular overexpression of APP and free radical generation is the likely mechanism of cell damage due to APP overexpression.  相似文献   

17.
18.
A novel splicing form of beta A4 amyloid precursor protein (APP) lacking exon 15, corresponding to 18 residues, was first reported in leukocytes and then in ubiquitous organs. To determine which APP molecules (APP695, APP751, or APP770) either with (N-APP) or without (L-APP; leukocyte-derived APP) exon 15 were expressed in various organs, we investigated the alternative splicing at exon 15 in the rat brain, kidney, heart, and testis by a PCR analysis of reverse-transcribed RNA and Southern blot analysis. Regarding APP695 without exons 7 and 8, L-APP was either seldom or never expressed in the brain, whereas both N- and L-APP were expressed in other organs. On the other hand, regarding APP751/770 containing exon 7, which codes for the Kunitz-type serine protease inhibitor domain, both N- and L-APP were expressed in all the organs examined, including the brain. These results suggest that a particular alternative regulation system related to exon 15 might be present in only APP695 of the brain and influence the proteolytic processing of APP.  相似文献   

19.
The effects of dietary cholesterol on brain amyloid precursor protein (APP) processing were examined using an APP gene-targeted mouse, genetically humanized in the amyloid beta-peptide (Abeta) domain and expressing the Swedish familial Alzheimer's disease mutations. These mice express endogenous levels of APP holoprotein and abundant human Abeta. Increased dietary cholesterol led to significant reductions in brain levels of secreted APP derivatives, including sAPPalpha, sAPPbeta, Abeta1-40, and Abeta1-42, while having little to no effect on cell-associated species, including full-length APP and the COOH-terminal APP processing derivatives. The changes in levels of sAPP and Abeta in brain all were negatively correlated with serum cholesterol levels and levels of serum and brain apoE. These results demonstrate that secreted APP processing derivatives and Abeta can be modulated in the brain of an animal by diet and provide evidence that cholesterol plays a role in the modulation of APP processing in vivo. APP gene-targeted mice lacking apoE, also have high serum cholesterol levels but do not show alterations in APP processing, suggesting that effects of cholesterol on APP processing require the presence of apoE.  相似文献   

20.
The insoluble amyloid deposited extracellularly in the brains of patients with Alzheimer's disease (AD) is composed of amyloid beta protein, a approximately 4-kDa secreted protein that is derived from a set of large proteins collectively referred to as the amyloid beta protein precursor (betaAPP). During normal processing the betaAPP is cleaved by beta secretase, producing a large NH2-terminal secreted derivative (sAPPbeta) and a COOH-terminal fragment beginning at Abeta1, which is subsequently cleaved by gamma secretase releasing secreted Abeta. Most secreted Abeta is Abeta1-40, but approximately 10% of secreted Abeta is Abeta1-42. Alternative betaAPP cleavage by alpha secretase produces a slightly longer NH2-terminal secreted derivative (sAPPalpha) and a COOH-terminal fragment beginning at Abeta17, which is subsequently cleaved by gamma secretase releasing a approximately 3-kDa secreted form of Abeta (P3). Several of the betaAPP isoforms that are produced by alternative splicing contain a 56-amino acid Kunitz protease inhibitor (KPI) domain known to inhibit proteases such as trypsin and chymotrypsin. To determine whether the KPI domain influences the proteolytic cleavages that generate Abeta, we compared Abeta production in transfected cells expressing human KPI-containing betaAPP751 or KPI-free betaAPP695. We focused on Abetas ending at Abeta42 because these forms appear to be most relevant to AD. Using specific sandwich enzyme-linked immunosorbent assays, we analyzed full-length Abeta1-42 and total Abeta ending at Abeta42 (Abeta1-42 + P3(42)). In addition, we analyzed the large secreted derivatives produced by alpha secretase (sAPPalpha) and beta secretase (sAPPbeta). In mouse teratocarcinoma (P19) cells expressing betaAPP695 or betaAPP751, expression of the KPI-containing betaAPP751 resulted in the secretion of a lower percentage of P3(42) and sAPPalpha and a correspondingly higher percentage of Abeta1-42 and sAPPbeta. Similar results were obtained in human embryonic kidney (293) cells. These results indicate that expression of the KPI domain reduces alpha secretase cleavage so that less P3 and relatively more full-length Abeta are produced. Thus, in human brain and in animal models of AD, the amount of KPI-containing betaAPP produced may be an important factor influencing Abeta deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号