首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In this paper the J-Q two-parameter characterization of elastic-plastic crack front fields is examined for surface cracked plates under uniaxial and biaxial tensile loadings. Extensive three-dimensional elastic-plastic finite element analyses were performed for semi-elliptical surface cracks in a finite thickness plate, under remote uniaxial and biaxial tension loading conditions. Surface cracks with aspect ratios a/c = 0.2, 1.0 and relative depths a/t = 0.2, 0.6 were investigated. The loading levels cover from small-scale to large-scale yielding. In topological planes perpendicular to the crack fronts, the crack stress fields were obtained. In order to facilitate the determination of Q-factors, modified boundary layer analyses were also conducted. The J-Q two-parameter approach was then used in characterizing the elastic-plastic crack front stress fields along these 3D crack fronts. Complete distributions of the J-integral and Q-factors for a wide range of loading conditions were obtained. It is found that the J-Q characterization provides good estimate for the constraint loss for crack front stress fields. It is also shown that for medium load levels, reasonable agreements are achieved between the T-stress based Q-factors and the Q-factors obtained from finite element analysis. These results are suitable for elastic-plastic fracture mechanics analysis of surface cracked plates.  相似文献   

3.
4.
This study describes a computational framework to quantify the influence of constraint loss and ductile tearing on the cleavage fracture process, as reflected by the pronounced effects on macroscopic toughness (J c , c). Our approach adopts the Weibull stress w as a suitable near-tip parameter to describe the coupling of remote loading with a micromechanics model incorporating the statistics of microcracks (weakest link philosophy). Unstable crack propagation (cleavage) occurs at a critical value of w which may be attained prior to, or following, some amount of stable, ductile crack extension. A central feature of our framework focuses on the realistic numerical modeling of ductile crack growth using the computational cell methodology to define the evolution of near-tip stress fields during crack extension. Under increased remote loading (J), development of the Weibull stress reflects the potentially strong variations of near-tip stress fields due to the interacting effects of constraint loss and ductile crack extension. Computational results are discussed for well-contained plasticity, where the near-tip fields for a stationary and a growing crack are generated with a modified boundary layer (MBL) formulation (in the form of different levels of applied T-stress). These analyses demonstrate clearly the dependence of w on crack-tip stress triaxiality and crack growth. The paper concludes with an application of the micromechanics model to predict the measured geometry and ductile tearing effects on the cleavage fracture toughness J c of an HSLA steel. Here, we employ the concept of the Dodds-Anderson scaling model, but replace their original local criterion based on the equivalence of near-tip stressed volumes by attainment of a critical value of the Weibull stress. For this application, the proposed approach successfully predicts the combined effects of loss of constraint and crack growth on measured J c -values.  相似文献   

5.
Surface crack-tip stress fields in a tensile loaded metallic liner bonded to a structural backing are developed using a two-parameter J-T characterization and elastic-plastic modified boundary layer (MBL) finite element solutions. The Ramberg-Osgood power law hardening material model with deformation plasticity theory is implemented for the metallic liner. In addition to an elastic plate backed surface crack liner model, elastic-plastic homogeneous surface crack models of various thicknesses were tested. The constraint effects that arise from the elastic backing on the thin metallic liner and the extent to which J-T two parameter solutions characterize the crack-tip fields are explored in detail. The increased elastic constraint imposed by the backing on the liner results in an enhanced range of validity of J-T characterization. The higher accuracy of MBL solutions in predicting the surface crack-tip fields in the bonded model is partially attributed to an increase in crack-tip triaxiality and a consequent increase in the effective liner thickness from a fracture standpoint. After isolating the effects of thickness, the constraint imposed by the continued elastic linearity of the backing significantly enhanced stress field characterization. In fact, J and T along with MBL solutions predicted stresses with remarkable accuracy for loads beyond full yielding. The effects of backing stiffness variation were also investigated and results indicate that the backing to liner modulus ratio does not significantly influence the crack tip constraint. Indeed, the most significant effect of the backing is its ability to impose an elastic constraint on the liner. Results from this study will facilitate the implementation of geometric limits in testing standards for surface cracked tension specimens bonded to a structural backing.  相似文献   

6.
The effect of a realistic residual stress field on the predicted initiation of brittle and ductile fracture in a pressure and axially loaded circumferentially cracked pipe is examined using finite element analysis, micromechanical models of fracture initiation, andJ-Q theory. The study confirms that residual stresses contribute to the driving force and reduce fracture loads early in the loading history. In addition, results show that the residual stresses severely alter theJ-value (i.e., fracture toughness) predicted for the onset of brittle fracture. The reason for this decrease is found to be the increase in constraint generated by the residual stress field. In contrast, the effect of residual stresses on the ductile fracture initiation toughness is shown to be negligible. kw]Key words kw]residual stress kw]fracture initiation kw]micromechanics  相似文献   

7.
This work describes the development of an engineering approach based upon a toughness scaling methodology incorporating the effects of weld strength mismatch on crack-tip driving forces. The approach adopts a nondimensional Weibull stress, [`(s)]w{\bar{{\sigma}}_w}, as a the near-tip driving force to correlate cleavage fracture across cracked weld configurations with different mismatch conditions even though the loading parameter (measured by J) may vary widely due to mismatch and constraint variations. Application of the procedure to predict the failure strain for an overmatch girth weld made of an API X80 pipeline steel demonstrates the effectiveness of the micromechanics approach. Overall, the results lend strong support to use a Weibull stress based procedure in defect assessments of structural welds.  相似文献   

8.
This work presents a numerical investigation of crack-tip constraint for SE(T) specimens and axially surface cracked pipes using plane-strain, nonlinear computations. The primary objective is to gain some understanding of the potential applicability of constraint designed fracture specimens in defect assessments of pressurized pipelines and cylindrical vessels. The present study builds upon the J-Q approach using plane-strain solutions to characterize effects of constraint on cleavage fracture behavior for the analyzed fracture specimens and cracked pipes. Under increased loading, each cracked configuration follows a characteristic J-Q trajectory which enables comparison of the corresponding driving force curve in the present context. A key outcome of this investigation is that toughness data measured using SE(T) specimens appear more applicable for cleavage fracture predictions of pressurized pipelines and cylindrical vessels than standard, deep notch fracture specimens under bend loading. The results provide a strong support for use of constraint-designed SE(T) specimens in fracture assessments of pressurized pipes and cylindrical vessels.  相似文献   

9.
10.
It is well known that the JQ theory can characterize the crack-tip fields and quantify constraint levels for various geometry and loading configurations in elastic–plastic materials, but it fails at bending-dominant large deformation. This drawback seriously restricts its applications to fracture constraint analysis. A modification of JQ theory is developed as a three-term solution with an additional term to address the global bending stress to offset this restriction. The nonlinear bending stress is approximately linearized in the region of interest under large-scale yielding (LSY), with the linearization factor determined using a two-point matching method at each loading for a specific cracked geometry in bending. To validate the proposed solution, detailed elastic–plastic finite element analysis (FEA) is conducted under plane strain conditions for three conventional bending specimens with different crack lengths for X80 pipeline steel. These include single edge notched bend (SENB), single edge notched tension (SENT) and compact tension (CT) specimens from small-scale yielding (SSY) to LSY. Results show that the bending modified JQ solution can well match FEA results of crack-tip stress fields for all bending specimens at all deformation levels from SSY to LSY, with the modified Q being a load- and distance-independent constraint parameter under LSY. Therefore, the modified parameter Q can be effectively used to quantify crack-tip constraint for bending geometries. Its application to fracture constraint analysis is demonstrated by determining constraint corrected JR curves.  相似文献   

11.
It is now generally agreed that the applicability of a one-parameter J-based ductile fracture approach is limited to so-called high constraint crack geometries, and that the elastic-plastic fracture toughness J1c, is not a material constant but strongly specimen geometry constraint-dependent. In this paper, the constraint effect on elastic-plastic fracture toughness is investigated by use of a continuum damage mechanics approach. Based on a new local damage theory for ductile fracture(proposed by the author) which has a clear physical meaning and can describe both deformation and constraint effects on ductile fracture, a relationship is described between the conventional elastic-plastic fracture toughness, J1c, and crack tip constraint, characterized by crack tip stress triaxiality T. Then, a new parameter Jdc (and associated criterion, Jd=Jdc) for ductile fracture is proposed. Experiments show that toughness variation with specimen geometry constraint changes can effectively be removed by use of the constraint correction procedure proposed in this paper, and that the new parameter Jdc is a material constant independent of specimen geometry (constraint). This parameter can serve as a new parameter to differentiate the elastic-plastic fracture toughness of engineering materials, which provides a new approach for fracture assessments of structures. It is not necessary to determine which laboratory specimen matches the structural constraint; rather, any specimen geometry can be tested to measure the size-independent fracture toughness Jdc. The potential advantage is clear and the results are very encouraging.  相似文献   

12.
Detailed finite element (PE) analyses are performed to study the effect of crack depth on crack-tip constraint at full yielding for pure bending of plane strain single-edge-cracked specimens. Analyses are based on small-strain formulations and perfect plasticity. The crack depth a/W ranges from 0.1 to 0.7, and the deformation is applied up to the limiting state of full plasticity where crack-tip stresses reach steady-state limiting values.At load levels smaller than the limit load (contained yielding), the crack-tip constraint (stress triaxiality) gradually decreases as a/W decreases, but, at load levels close to the limit load (or at the limit load), it decreases very sharply. In terms of a/W, tractable closed-form approximations for fully plastic crack-tip stress and strain fields are proposed, and fully plastic values of crack-tip stresses are re-phrased in terms of the Q-parameter [1, 2]. The role of crack-tip strains on fracture of shallow-cracked bending specimens is briefly discussed.  相似文献   

13.
Conventional theories of fracture assume that the state of stress and strain in the vicinity of a crack tip, and so the onset of failure, is characterised by a single parameter. The physical extent of these single-parameter fields is determined by the geometry, size and mode of loading of the engineering structure or test specimen containing the crack. It is now recognised that fracture toughness is a material property characterised by a single parameter J only in special circumstances which involve a high degree of constraint at the crack-tip. In general the apparent toughness of a material changes according to the shape and size of the cracked configuration and the mode of loading imposed. Recent analytical, numerical and experimental studies have attempted to describe fracture in terms of both J and a second parameter. The reason for the second parameter is to provide further information, which J on its own is unable to convey, concerning how the structural and loading configuration affects the constraint conditions at the crack-tip. One particular candidate parameter is the elastic T-stress which is directly proportional to the load applied to the cracked geometry. This paper brings together published solutions for the T-stress for a range of two and three-dimensional cracked geometries and presents some new results calculated at AEA Technology. The application of two-parameter fracture mechanics is a subject of ongoing development and users of the data in this paper are recommended to seek expert advice regarding applications to specific structural integrity assessments.  相似文献   

14.
This paper investigates interfacial crack tip stress fields and the J-integral for bi-materials with plastic hardening mismatch via detailed elastic-plastic finite element analyses. For small scale yielding, the modified boundary layer formulation with the elastic T-stress is employed. For fully plastic yielding, plane strain single-edge- cracked specimens under pure bending are considered. Interfacial crack tip stress fields are explained by modified Prandtl slip-line fields. It is found that, for bi-materials consisting of two elastic-plastic materials, increasing plastic hardening mismatch increases both crack-tip stress constraint in the lower hardening material and the J-contribution there. The implication of asymmetric J-integral in bi-materials is also discussed.  相似文献   

15.
This study investigates the fracture response and crack tip constraint of thick wall pipelines subject to large plastic bending. Such a circumstance frequently occurs during the installation of offshore pipelines (such as the reeling method), and accidental overloading, both inducing inelastic bending. The near-tip stress and strain fields are obtained through the fully nonlinear 3D finite element models constructed to examine the response of a practical range of cracked pipeline geometries and material properties. It is observed that throughout the loading history (up to the large scale yielding of the pipeline), by incorporation of the JQ two parameter fracture theory, the near crack tip fields do indeed resemble those obtained from a KT modified boundary layer formulation. This analogy provides sufficient proof for the applicability of the similitude concept inherent and fundamental to any fracture assessment procedure. All the pipelines considered in this study, which had realistic crack sizes, exhibited low constraint behavior (i.e. −1.4 < Q < −0.4). Additionally, Q was observed to decrease as a linear function of the global bending strain. Based on this correlation, simplified design equations are presented by which the constraint of such pipelines could be effectively estimated. The equations would be suitable for incorporation in the constraint-matched integrity assessment procedures that would in turn overcome the overt conservatism produced by the use of single parameter fracture mechanics approaches. Suitability of the low constraint laboratory specimens for fracture toughness measurements is also confirmed.  相似文献   

16.
17.
This paper describes a study of the test specimen thickness effect on fracture toughness of a material, in the transition temperature region, for CT specimens. In addition we studied the specimen thickness effect on the T33-stress (the out-of-plane non-singular term in the series of elastic crack-tip stress fields), expecting that T33-stress affected the crack-tip triaxiality and thus constraint in the out-of-plane direction. Finally, an experimental expression for the thickness effect on the fracture toughness using T33-stress is proposed for 0.55% carbon steel S55C. In addition to the fact that T33 (which was negative) seemed to show an upper bound for large B/W, these results indicate the possibility of improving the existing methods for correlating fracture toughness obtained by test specimen with the toughness of actual cracks found in the structure, using T33-stress.  相似文献   

18.
Two-parameter JQ elastic–plastic crack front fields are developed for surface-cracked metallic liners of composite overwrapped pressure vessels (COPV). Uniaxial tensile data from 6061-T6 aluminum coupon specimens for the metallic liner and anisotropic elastic material properties for the filament wound carbon fiber epoxy are used in three-dimensional finite element models. Modified boundary layer (MBL) finite element solutions are used to evaluate near tip dominance and parameterization limits. Semicircular surface cracks of varying depths inserted in the inner liner surface are investigated. J and Q crack front distributions, and the corresponding parameterization limits, and near tip triaxiality trends are obtained and the effects of elastic–plastic material discontinuity of the heterogeneous joint and the biaxiality of stresses are evaluated. JQ predicted fields maintain accuracy for higher far-field loads and lower near tip deformations compared to the liner only models for angles near the free surface. However, for the critical crack growth region, Q does not maintain a radially independent measure of constraint for loads seen in a typical COPV; therefore, these fracture predictors may not be applicable. In the COPV, large-scale yielding marks a transition where triaxiality is higher as a function of constraint compared to the linear relationship common to homogeneous structures. Results from this study will facilitate the implementation of proof test logic and accurate fracture prediction of COPV liners with emphasis on geometric limits and fracture specimen applicability.  相似文献   

19.
A new methodology for predicting the location of maximum crack extension along a surface crack front in ductile materials is presented. Three-dimensional elastic-plastic finite element analyses were used to determine the variations of a constraint parameter (αh) based on the average opening stress in the crack tip plastic zone and the J-integral distributions along the crack front for many surface crack configurations. Monotonic tension and bending loads are considered. The crack front constraint parameter is combined with the J-integral to characterize fracture, the critical fracture location being the location for which the product h is a maximum. The criterion is verified with test results from surface cracked specimens.  相似文献   

20.
Specimen size, crack depth and loading conditions may effect the materials fracture toughness. In order to safeguard against these geometry effects, fracture toughness testing standards prescribe the use of highly constrained deep cracked bend specimens having a sufficient size to guarantee conservative fracture toughness values. One of the more advanced testing standards, for brittle fracture, is the master curve standard ASTM E1921-97, which is based on technology developed at VTT Manufacturing Technology. When applied to a structure with low constraint geometry, the standard fracture toughness estimates may lead to strongly over-conservative estimate of structural performance. In some cases, this may lead to unnecessary repairs or even to an early “retirement” of the structure. In the case of brittle fracture, essentially three different methods to quantify constraint have been proposed, J small scale yielding correction, Q-parameter and the Tstress. Here, a relation between the Tstress and the master curve transition temperature T0 is experimentally developed and verified. As a result, a new engineering tool to assess low constraint geometries with respect to brittle fracture has been obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号