首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro culture (IVC) of preimplantation mouse embryos is associated with changes in gene expression. It is however, not known if the method of fertilization affects the global pattern of gene expression. We compared gene expression and development of mouse blastocysts produced by in vitro fertilization (IVF) versus blastocysts fertilized in vivo and cultured in vitro from the zygote stage (IVC) versus control blastocysts flushed out of the uterus on post coital day 3.5. The global pattern of gene expression was assessed using the Affymetrix 430 2.0 chip. It appears that each method of fertilization has a unique pattern of gene expression and development. Embryos cultured in vitro had a reduction in the number of trophoblastic cells (IVF 33.5 cells, IVC 39.9 cells, and 49.6 cells in the in vivo group) and, to a lesser degree, of inner cell mass cells (12.8, 11.7, and 13.8 respectively). The inner cell mass nuclei were larger after culture in vitro (140 microm(2), 113 microm(2), and 86 microm(2) respectively). Although a high number of genes (1912) was statistically different in the IVF cohort when compared with the in vivo control embryos, the magnitude of the changes in gene expression were low and only a minority of genes (29 genes) was changed more than fourfold. Surprisingly, IVF embryos were different from IVC embryos (3058 genes were statistically different, but only three changed more than fourfold). Proliferation, apoptosis, and morphogenetic pathways are the most common pathways altered after IVC. Overall, IVF and embryo culture have a profound effect on gene expression pattern and phenotype of mouse preimplantation embryos.  相似文献   

2.
It has been observed that apoptosis occurs in human blastocysts. In other types of cell, the characteristic morphological changes seen in apoptotic cells are executed by caspases, which are regulated by the BCL-2 family of proteins. This study investigated whether these components of the apoptotic cascade are present throughout human preimplantation development. Developing and arrested two pronucleate embryos at all stages were incubated with a fluorescently tagged caspase inhibitor that binds only to active caspases, fixed, counterstained with 4,6-diamidino-2-phenylindole (DAPI) to assess nuclear morphology and examined using confocal microscopy. Active caspases were detected only after compaction, at the morula and blastocyst stages, and were frequently associated with apoptotic nuclei. Occasional labelling was seen in arrested embryos. Expression of proapoptotic BAX and BAD and anti-apoptotic BCL-2 was examined in single embryos using RT-PCR and immunohistochemistry. BAX and BCL-2 mRNAs were expressed throughout development, whereas BAD mRNA was expressed mainly after compaction. Simultaneous expression of BAX and BCL-2 proteins within individual embryos was confirmed using immunohistochemistry. The onset of caspase activity and BAD expression after compaction correlates with the previously reported appearance of apoptotic nuclei. As in other types of cell, human embryos express common molecular components of the apoptotic cascade, although apoptosis appears to be suppressed before compaction and differentiation.  相似文献   

3.
4.
The uptake of myo-inositol by mouse oocytes and preimplantation embryos of a crossbred (DBA x C57BL/6) and a purebred outbred strain (MF1) was measured using [2-(3)H]myo-inositol. Uptake in crossbred embryos increased about 15-fold between the one- and two-cell stages and increased again by about sixfold at the blastocyst stage compared with the morula stage. Uptake in purebred embryos increased about 42-fold between the one- and two-cell stages and increased more than threefold at the blastocyst stage compared with the morula stage. In all stages examined, except two-cell crossbred embryos, inositol uptake was, depending on the stage, either largely or partly sodium dependent and could be inhibited by the sodium-dependent hexose transport inhibitor, phloridzin. This is consistent with the hypothesis that transport occurs via a sodium myo-inositol transporter (SMIT) protein. In addition, there was strong evidence that a sodium-independent mechanism of uptake, possibly a channel, was switched on at the two-cell stage coincident with zygotic gene activation which resulted in 141-fold and 71-fold increases in sodium-independent uptake from the one-cell to two-cell stages in crossbred and purebred embryos, respectively. This mechanism was either abolished or drastically downregulated at the blastocyst stage, whereas sodium-dependent uptake was markedly upregulated. In two-cell crossbred embryos, there was a complete abolition of sodium-dependent uptake, again possibly regulated by zygotic gene activation. The hypothesis that the changes in mechanism of inositol uptake at about the two-cell stage are due to zygotic gene activation was supported by the finding that these changes did not occur in parthenogenetic two-cell embryos.  相似文献   

5.
Cleavage-stage embryos have an absolute requirement for pyruvate and lactate, but as the morula compacts, it switches to glucose as the preferred energy source to fuel glycolysis. Substrates such as glucose, amino acids, and lactate are moved into and out of cells by facilitated diffusion. In the case of lactate and pyruvate, this occurs via H+-monocarboxylate cotransporter (MCT) proteins. To clarify the role of MCT in development, transport characteristics for DL-lactate were examined, as were mRNA expression and protein localisation for MCT1 and MCT3, using confocal laser scanning immunofluorescence in freshly collected and cultured embryos. Blastocysts demonstrated significantly higher affinity for DL-lactate than zygotes (Km 20 +/- 10 vs 87 +/- 35 mmol lactate/l; P = 0.03 by linear regression) but was similar for all stages. For embryos derived in vivo and those cultured with glucose, MCT1 mRNA was present throughout preimplantation development, protein immunoreactivity appearing diffuse throughout the cytoplasm with brightest intensity in the outer cortical region of blastomeres. In expanding blastocysts, MCT1 became more prominent in the cytoplasmic cortex of blastomeres, with brightest intensity in the polar trophectoderm. Without glucose, MCT1 mRNA was not expressed, and immunoreactivity dramatically reduced in intensity as morulae died. MCT3 mRNA and immunoreactivity were not detected in early embryos. The differential expression of MCT1 in the presence or absence of glucose demonstrates that it is important in the critical regulation of pH and monocarboxylate transport during preimplantation development, and implies a role for glucose in the control of MCT1, but not MCT3, expression.  相似文献   

6.
7.
8.
9.
The aim of in vitro embryo systems is to produce embryos of comparable quality to those derived in vivo. Comparison of embryo metabolism as an indicator of viability may be useful in optimization of culture conditions. The aim of the present study was to determine glucose, glutamine and pyruvate use by various stage pig embryos produced in vitro and in vivo. The results indicate that pig embryos use glucose via glycolysis in significant amounts at all stages examined, regardless of embryo origin. In vitro-derived embryos have significantly increased glycolytic activity after the eight-cell stage, whereas in vivo-derived embryos have increased glycolysis at the blastocyst stage. In vivo-derived embryos have higher rates of glycolysis compared with in vitro-derived embryos. Glucose usage through the Krebs cycle for in vitro- and in vivo-derived embryos increased significantly at the blastocyst stage. Pig embryos produced in vitro used constant amounts of glutamine throughout development, whereas in vivo-derived embryos increased glutamine usage after the eight-cell stage. Pyruvate use was minimal at all stages examined for both in vitro- and in vivo-derived pig embryos, showing significant increases at the blastocyst stage. Krebs cycle metabolism of pyruvate, glutamine and glucose by in vivo-derived embryos was higher than that by in vitro-derived embryos. Current in vitro culture conditions produce pig embryos with altered metabolic activity, which may compromise embryo viability.  相似文献   

10.
Culture of preimplantation embryos affects gene expression. The magnitude of the effect on the global pattern of gene expression, however, is not known. We compared global patterns of gene expression in blastocysts cultured from the one-cell stage in either Whitten's medium or KSOM + amino acids (KSOM/AA) with that of blastocysts that developed in vivo, using the Affymetrix MOE430A chip. The analysis revealed that expression of 114 genes was affected after culture in Whitten's medium, whereas only 29 genes were mis-expressed after culture in KSOM/AA. Expression Analysis Systematic Explorer was used to identify biological and molecular processes that are perturbed after culture and indicated that genes involved in protein synthesis, cell proliferation and transporter function were down-regulated after culture in Whitten's medium. A common set of genes involved in transporter function was also down-regulated after culture in KSOM/AA. These results provide insights as to why embryos develop better in KSOM/AA than in Whitten's medium, and highlight the power of microarray analysis to assess global patterns of gene expression.  相似文献   

11.
During oogenesis, mammalian oocytes accumulate maternal mRNAs that support the embryo until embryonic genome activation. RNA-binding proteins (RBP) may regulate the stability and turnover of maternal and embryonic mRNAs. We hypothesised that varying embryo culture conditions, such as culture medium, oxygen tension and MAPK inhibition, affects regulation of RBPs and their targets during preimplantation development. STAU1, ELAVL1, KHSRP and ZFP36 proteins and mRNAs were detected throughout mouse preimplantation development, whereas Elavl2 mRNA decreased after the two-cell stage. Potential target mRNAs of RBP regulation, Gclc, Slc2a1 and Slc7a1 were detected during mouse preimplantation development. Gclc mRNA was significantly elevated in embryos cultured in Whitten's medium compared with embryos cultured in KSOMaa, and Gclc mRNA was elevated under high-oxygen conditions. Inhibition of the p38 MAPK pathway reduced Slc7a1 mRNA expression while inhibition of ERK increased Slc2a1 mRNA expression. The half-lives of the potential RBP mRNA targets are not regulated in parallel; Slc2a1 mRNA displayed the longest half-life. Our results indicate that mRNAs and proteins encoding five RBPs are present during preimplantation development and more importantly, demonstrate that expression of RBP target mRNAs are regulated by culture medium, gas atmosphere and MAPK pathways.  相似文献   

12.
13.
Developmental and molecular correlates of bovine preimplantation embryos   总被引:2,自引:0,他引:2  
Expression of embryonic genes is altered in different culture conditions, which influence developmental potential both during preimplantation and fetal development. The objective of this study was to define the effects of culture conditions on: bovine embryonic development to blastocyst stage, blastocyst cell number, apoptosis and expression patterns of a panel of developmentally important genes. Bovine embryos were cultured in vitro in three culture media containing amino acids, namely potassium simplex optimization medium (KSOMaa), Charles Rosenkrans 1 (CR1aa) and synthetic oviductal fluid (SOFaa). Apoptosis in blastocysts was determined by TUNEL assay and expression profiles of developmentally important genes were assayed by real-time PCR. In vivo-produced bovine blastocysts were used as controls for experiments determining gene expression patterns. While the cleavage rates did not differ, embryos cultured in SOFaa had higher rates of development to blastocyst stage (P < 0.05). Mean cell numbers and percentages of apoptotic cells per blastocyst did not differ among the groups. Expression of the heat shock protein 70 (Hsp70) gene was significantly up-regulated in both CR1aa and KSOMaa when compared with SOFaa (P < 0.001). DNA methyltransferase 3a (Dnmt3a) expression was higher in embryos cultured in CR1aa than in those cultured in SOFaa (P < 0.001). Expression of interferon tau (IF-tau) and insulin-like growth factor II receptor (Igf-2r) genes was significantly up-regulated in KSOMaa when compared with CR1aa (P < 0.001). Gene expression did not differ between in vivo-derived blastocysts and their in vitro-derived counterparts. In conclusion, SOFaa supports higher development to blastocyst stage than KSOMaa and CR1aa, and the culture conditions influence gene expression.  相似文献   

14.
In the preimplantation mouse embryo, the protein kinase C (PKC) family has been implicated in regulation of egg activation, progression of meiotic and mitotic cell cycles, embryo compaction, and blastulation, but the involvement of the individual isozymes is largely unknown. Here, using semiquantitative immunocytochemistry and confocal microscopy we analyze the relative amount and subcellular distribution of ten isozymes of PKC (alpha, betaI, betaII, gamma, delta, epsilon, eta, theta, zeta, iota/lambda) and a PKC-anchoring protein, receptor for activated C-kinase 1 (RACK1). Our results show that all of these isoforms of PKC are present between the two-cell and blastocyst stages of mouse preimplantation development, and that each has a distinct, dynamic pattern and level of expression. The data suggest that different complements of the isozymes are involved in various steps of preimplantation development, and will serve as a framework for further functional studies of the individual isozymes. In particular, there was a transient increase in the nuclear concentration of several isozymes at the early four-cell stage, suggesting that some of the PKC isozymes might be involved in regulation of nuclear organization and function in the early mouse embryo.  相似文献   

15.
The preimplantation period in the rabbit consists of a 3 day cleavage stage during which the number of cells increases with little change in embryo size, followed by a 3-4 day blastocyst stage during which the inner cell mass, the blastocoel and the trophectodermal layer are formed and the embryo grows rapidly in size and protein content. This study used [3H]inositol to investigate the transport of inositol, an essential component of the phosphatidylinositol signal transduction system, over the 6 days of preimplantation development by rabbit embryos. In the presence of 15 micromol inositol-1 in the incubation medium, there was a small linear increase in inositol uptake from 0.07 pmol per embryo per h at the one-cell stage (day 1) to 0.135 pmol at the late morula (day 3) stage. Inositol uptake increased to 0.58 pmol per embryo per h for early blastocysts (day 4) and 23.7 pmol for late blastocysts (day 6). There was a significant linear relationship between inositol uptake and blastocyst diameter and surface area. Efflux of inositol from early morulae was minimal (about 1.25% of embryo content per h), whereas efflux from mid-blastocysts (day 5) was much greater (about 15.6% of embryo content per h). Efflux of inositol from both early morulae and mid-blastocysts was increased by decreasing the osmolality of the incubation medium. Varying the osmolality had no effect on inositol uptake up to 2 h. Inositol uptake was dependent on sodium in cleavage-stage embryos but independent of sodium in blastocyst stages. In early morulae, inositol uptake was inhibited by glucose and the sodium-dependent hexose transport inhibitor, phloridzin, but not by the facilitated transport inhibitor, phloretin. Inositol uptake in early morulae was saturable; estimates of 0.227 and 0.288 pmol per morula per h for V(max) and 0.045 and 0.038 mmol-1 [corrected] for Km were obtained for sodium-dependent transport in two separate experiments. All of these results are consistent with the hypothesis that transport in cleavage stages occurs via a sodium myo-inositol transporter (SMIT) protein. Uptake in blastocysts was non-saturable. Uptake into blastocysts appeared to take place by a transcellular rather than a paracellular route.  相似文献   

16.
Cytogenetic damage expressed as micronuclei (MN) in 4-8-cell embryos generated after irradiation of male or male and female mice in the absence and presence of vitamin C was investigated. Male NMRI mice were whole body exposed to 4 Gy gamma-rays and mated with non-irradiated superovulated female mice in 6 successive weeks after irradiation in a weekly interval. In experiments involving irradiation of both male and female mice, irradiated male mice for 6 weeks post irradiation were mated with female mice irradiated after induction of superovulation. Effect of 100 mg/kg vitamin C (ascorbic acid) on the frequency of MN was also studied. Pregnant animals were euthanized and embryos flushed from the oviducts and fixed on slides. The rate of MN observed in embryos generated from irradiated male compared with control group dramatically increased (P<0.01). Frequency of MN in this group decreased dramatically after vitamin C treatment (P<0.01). Frequency of MN in embryos generated by mating both male and female irradiated mice was higher than that observed for those embryos generated by irradiated male mice alone. However, a considerable modifying effect of vitamin C was observed for this group too (P<0.05). Results indicate that irradiation of gonads during spermatogenesis and preovulatory stage oocytes may lead to unstable chromosomal aberrations and probably stable chromosomal abnormalities affecting pairing and disjunction of chromosomes in successive preimplantation embryos expressed as MN. The way vitamin C reduces clastogenic effects of radiation on germ cells leading to reduced frequency of MN in pre-embryos might be due to its antioxidation and radical scavenging properties.  相似文献   

17.
Centrin is an evolutionarily conserved 20 kDa, Ca+2-binding, calmodulin-related protein associated with centrioles and basal bodies of phylogenetically diverse eukaryotic cells. Earlier studies have shown that residual centrosomes of non-rodent mammalian spermatozoa retain centrin and, in theory, could contribute this protein for the reconstruction of the zygotic centrosome after fertilization. The present work shows that CEN2 and CEN3 mRNA were detected in germinal vesicle-stage (GV) oocytes, MII oocytes, and pre-implantation embryos from the two-cell through the blastocyst stage, but not in spermatozoa. Boar ejaculated spermatozoa possess centrin as revealed by immunofluorescence microscopy and western blotting. Immature, GV oocytes possess speckles of centrin particles in the perinuclear area, visualized by immunofluorescence microscopy and exhibit a 19 kDa band revealed by western blotting. Mature MII stage oocytes lacked centrin that could be detected by immunofluorescence or western blotting. The sperm centrin was lost in zygotes after in vitro fertilization. It was not detectable in embryos by immunofluorescence microscopy until the late blastocyst stage. Embryonic centrin first appeared as fine speckles in the perinuclear area of some interphase blastocyst cells and as putative centrosomes of the spindle poles of dividing cells. The cells of the hatched blastocysts developed centrin spots comparable with those of the cultured cells. Some blastomeres displayed undefined curved plate-like centrin-labeled structures. Anti-centrin antibody labeled interphase centrosomes of cultured pig embryonic fibroblast cells as distinct spots in the juxtanuclear area. Enucleated pig oocytes reconstructed by electrofusion with pig fibroblasts displayed centrin of the donor cell during the early stages of nuclear decondensation but became undetectable in the late pronuclear or cleavage stages. These observations suggest that porcine zygotes and pre-blastocyst embryonic cells lack centrin and do not retain exogenously incorporated centrin. The early embryonic centrosomes function without centrin. Centrin in the blastocyst stage embryos is likely a result of de novo synthesis at the onset of differentiation of the pluripotent blastomeres.  相似文献   

18.
In recent years, it has become evident that genetic selection to improve milk production has resulted in a decline in dairy cattle fertility. Growing evidence suggests that the greatest loss occurs early in pregnancy around the time of embryo implantation. As a means to make genetic improvements and to assist in reproductive performance, use of artificial reproductive technologies such as artificial insemination and in vitro production of embryos have been widely used. Both of these technologies rely on the competence and quality of gametes for successful development of embryos. Often, selection of animals is based on the genetic merit of the animal, although specific fertility markers are relatively underdeveloped compared with markers for production traits. Similarly, current in vitro fertilization systems could benefit from a uniform method for selection of the best quality embryos to transfer into recipients for successful implantation and delivery of healthy offspring. As genetics underlie biological processes such as fertility, the need exists to further identify and characterize genes that affect fertility and development within both the parental gametes and the embryo. Furthermore, the magnitude of the contribution of each parental genome to the success of embryo development and pregnancy is not clear. As such, the objective of this review is to provide an overview of studies relating to genetic markers at the DNA level, parental and embryonic gene expression, and the effects of epigenetics on embryonic development. Future studies should exploit advances in molecular technologies to identify and classify genes underlying fertility and development to establish biomarkers and predictors for improved genetic selection.  相似文献   

19.
A series of Ca(2+) oscillations during mammalian fertilization is necessary and sufficient to stimulate meiotic resumption and pronuclear formation. It is not known how effectively development continues in the absence of the initial Ca(2+) signal. We have triggered parthenogenetic egg activation with cycloheximide that causes no Ca(2+) increase, with ethanol that causes a single large Ca(2+) increase, or with Sr(2+) that causes Ca(2+) oscillations. Eggs were co-treated with cytochalasin D to make them diploid and they formed pronuclei and two-cell embryos at high rates with each activation treatment. However, far fewer of the embryos that were activated by cycloheximide reached the blastocyst stagecompared tothose activated by Sr(2+) orethanol. Any cycloheximide-activated embryos that reached the blastocyst stage had a smaller inner cell mass number and a greater rate of apoptosis than Sr(2+)-activated embryos. The poor development of cycloheximide-activated embryos was due to the lack of Ca(2+) increase because they developed to blastocyst stages at high rates when co-treated with Sr(2+) or ethanol. Embryos activated by either Sr(2+) or cycloheximide showed similar signs of initial embryonic genome activation (EGA) when measured using a reporter gene. However, microarray analysis of gene expression at the eight-cell stage showed that activation by Sr(2+) leads to a distinct pattern of gene expression from that seen with embryos activated by cycloheximide. These data suggest that activation of mouse eggs in the absence of a Ca(2+) signal does not affect initial parthenogenetic events, but can influence later gene expression and development.  相似文献   

20.
Preimplantation embryos can consume and produce amino acids in a manner dependent upon the stage of development that may be predictive of subsequent viability. In order to examine these relationships in the pig, patterns of net depletion and appearance of amino acids by in vitro produced porcine preimplantation embryos were examined. Cumulus oocyte complexes derived from slaughterhouse pre-pubertal pig ovaries were matured for 40 h in defined TCM-199 medium (containing PVA) before being fertilised (Day 0) with frozen-thawed semen in Tris-based medium. After 6 h, presumptive zygotes were denuded and cultured in groups of 20, in NCSU-23 medium modified to contain 0.1 mM glutamine plus a mixture of 19 amino acids (aa) at low concentrations (0.02-0.11 mM) (NCSU-23(aa)). Groups of 2-20 embryos were removed (dependent on stage) on Day 0 (1 cell), Day 1 (two- and four-cells), Day 4 (compact morulae) and Day 6 (blastocysts) and placed in 4 mul NCSU-23aa for 24 h. After incubation, the embryos were removed and the spent media was analysed by HPLC. The net rate of amino acid depletion or appearance varied according to amino acid (P < 0.001) and, apart from serine and histidine, stage of development (P < 0.014). Glycine, isoleucine, valine, phenylalanine, tryptophan, methionine, asparagine, lysine, glutamate and aspartate consistently appeared, whereas threonine, glutamine and arginine were consistently depleted. Five types of stage-dependent trends could be observed: Type I: amino acids having high rates of net appearance on Day 0 that reached a nadir on Day 1 or 4 but subsequently increased by Day 6 (glycine, glutamate); Type II: those that exhibited lower rates of net appearance on Days 0 and 6 compared with the intermediate Days 1 and 4 (isoleucine, valine, phenylalanine, methionine, arginine); Type III: amino acids which showed a continuous fall in net appearance (asparagine, aspartate); Type IV: those that exhibited a steady fall in net depletion from Day 0 to Day 6 (glutamine, threonine); Type V: those following no discernable trend. Analysis of further embryo types indicated that presumptive polyspermic embryos on Day 0 had increased (P < 0.05) net rates of leucine, isoleucine, valine and glutamate appearance, and reduced (P < 0.05) net rates of threonine and glutamine depletion compared with normally inseminated oocytes. These data suggest that the net rates of depletion and uptake of amino acids by pig embryos vary between a) amino acids, b) the day of embryo development and, c) the type of embryos present at a given stage of development. The results also suggested that the net depletion and appearance rates of amino acids by early pig embryos might be more similar to those of the human than those of the mouse and cow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号