首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
应用双频激光干涉仪检验数控机床定位精度   总被引:3,自引:0,他引:3  
介绍了应用双频激光干涉仪检验数控机床定位精度的原理、方法及测量误差分析。  相似文献   

2.
采用激光干涉仪对重型数控机床纵向上两段位置定位精度进行测量,得到目标位置点的定位精度和重复定位精度,并对试验值进行了分析,为探索利用虚拟检测方法得到全程精度值打下一定的基础.  相似文献   

3.
提出了一种基于光栅尺的数控机床定位精度和重复定位精度检测方法,利用光栅尺、细分计数卡、工控机对数控机床的定位精度和重复定位精度进行检测,并与激光干涉仪的检测结果相比较,实验表明,该方法不仅检测精度高,成本低,而且操作简便。  相似文献   

4.
主轴头和控制系统补偿的位置误差方面,大型加工中心的定位精度要求为数百分之一毫米。采用ML10激光干涉仪就能达到要求。  相似文献   

5.
随着数控机床应用的普及,采用激光干涉仪对数控机床进行定位精度检测也成为目前公认的高效、高精度的检测方法。但是不同的机床使用激光干涉仪检测的精度曲线会各不相同,因此想要提高数控机床定位精度,就需要对不同的测试结果给予全面而科学地分析,本文就雷尼绍产品在使用过程中遇到的几种机床误差曲线的误差源及解决方案提出分析,供更多关心数控机床精度检测和误差修复的人士参考。  相似文献   

6.
随着数控机床应用的普及,采用激光干涉仪对数控机床进行定位精度检测也成为目前公认的高效、高精度的检测方法。但是不同的机床使用激光干涉仪检测的精度曲线会各不相同,因此想要提高数控机床定位精度,就需要对不同的测试结果给予全面而科学地分析,本文就雷尼绍产品在使用过程中遇到的几种机床误差曲线的误差源及解决方案提出分析,供更多关心数控机床精度检测和误差修复的人士参考。  相似文献   

7.
双频激光干涉仪测试直线电机进给定位精度的研究   总被引:4,自引:1,他引:4  
应用双频激光干涉仪对直线电机进给的定位精度进行了测试。在介绍双频激光干涉仪测量原理的基础上,对直线电机进给定位精度测试方法作了详细的描述。测试结果发现,直线电机进给的速度、加速度的变化对定位精度的影响不是很大。利用最小二乘法对各点定位精度平均值进行分段线性拟合,并对直线电机进给的定位精度进行补偿,可以较大地提高直线电机进给的定位精度。  相似文献   

8.
数控机床定位精度及重复定位精度是零件加工精度的决定因素,是提高机床加工精度和运行稳定性的关键。数控机床定位精度影响因素多、非线性程度高,受到持续的、广泛的关注。本文基于精度提高过程,从定位精度误差源、定位精度检测、误差补偿等方面进行评述。当前研究在系统性、普遍性、实用性等方面存在不足,建立普遍适用的定位精度综合模型、控制方法和实现高精度、低成本、易操作的补偿方法是发展趋势。  相似文献   

9.
机床作为装备制造业的母机,在一个国家工业发展中扮演着十分重要的地位,一国机床行业的水平直接反应出该国制造业水平。机床的检验为机床质量的优劣提供了判别的依据,随着世界范围内机床行业的跨越式发展,机床检验技术和产品的发展在最近几十年也取得了惊人的进步。从检验手段上看,从最初机床检验靠工人经验判别,到依靠各种机械量仪,到现在使用激光干涉仪检验,检验的精度不断得到提高。  相似文献   

10.
数控机床误差补偿技术通过设计和制造途径消除或减少数控机床可能的误差源,是提高数控机床加工精度的有效途径。其内容包括误差检测、误差建模和误差补偿。数控机床误差补偿效果好坏在很大程度上取决于误差综合数学模型建立的准确性。而误差元素模型是误差综合数学模型的基础。所以,误差补偿的首要任务是对数控机床误差元素进行准确检测。文中介绍了利用激光干涉仪检测和辨识数控机床几何误差的方法,建立了基于激光干涉仪的数控机床几何误差元素模型。  相似文献   

11.
This paper deals with the accuracy of compensation of machine tools using a tracking interferometer using the multilateration method. The measurement strategy and thermal drift compensation of the measurements are studied. It shows that most effects of temperature are accurately compensated by the laser tracking interferometer software. However, thermal drifts of accessories are not taken into account, and are therefore not corrected. To validate the robustness of procedures, the geometrical errors of the same machine tool were measured by five measurement strategies using the same equipment. Each strategy is devised and carried out independently by a different person from several institutions. For each strategy, the geometrical compensations were applied to a set of nominal tool path points. The difference, between the nominal points and the compensated or uncompensated points was calculated. This criterion was used to discuss the procedures employed by the participants.  相似文献   

12.
针对常用的Stribeck摩擦指数模型,提出用泰勒高次展开的方法达到非线性摩擦模型的线性化,利用最小二乘拟合的方法得到摩擦模型参数。通过对数控机床控制系统的电动机电流和转速等信号的采集,得到了进给系统中摩擦力矩与转速的对应关系,利用提出的方法进行了辨识实验,实验结果表明,该方法能对Stribeck摩擦模型的参数进行精确的辨识。该方法在工程实际中具有应用价值。  相似文献   

13.
分析了数控铣镗床滑枕产生进给精确定位偏差的原因,介绍了以基准杆和位移传感器方式对实现滑枕精确定位进行补偿的关键结构和实现过程.  相似文献   

14.
The positioning accuracy of computer numerical control (CNC) machine tools is mainly limited by the manufacturing accuracy of their linear and circular motion axes and by the long-term dimensional stability of their structures. Maximizing this accuracy can prove to be a particularly challenging task, especially for large-sized systems. In fact, heat-induced deformations, long-period deformation of foundations and the manufacturing process itself, these all cause time-dependent structural deformations of the machine body, which are difficult to model and to predict. The usual approach is a model-based prediction of structural deformations, which is followed by a compensation of positioning errors at CNC level. This approach is often limited by the complexity of the problem from both geometrical (system geometry can be very complex and it can vary in time) and physical (it is difficult to model and consider any possible load type and loading condition) point of view. As a consequence, only limited success has been achieved in active error compensation based on the modelling of the relationship between the generalized dynamic loads and the structural deformation field. This paper illustrates a different approach in active error compensation, which exploits a new measurement system able to provide real-time measurement of the displacement field of a given structural component, without any model about its dynamic/thermal structural behavior.  相似文献   

15.
分析了配置华中8型系统的3轴加工中心加装数控转台,升级改造第4轴(A轴)的具体步骤、方法,并针对安装调试中的参数设置、PLC程序设计和转台精度检测与调整等关键技术难点进行说明,对于华中8型这一全数字高档数控系统在企业的应用具有参考价值.  相似文献   

16.
本文介绍一种使用美国光动公司的激光多谱勒位移测量仪,对数控机床进行空间误差检测的激光矢量测量新方法。该方法可以方便而快速地检测出机床的空间定位精度,包括3个定位误差、6个直线度误差和3个垂直度误差;同时还可以根据测量的空间定位误差数据生成误差补偿的代码,进而可以对其进行空间定位误差的补偿,大幅度提高了数控机床加工精度。  相似文献   

17.
介绍一种使用激光多普勒位移测量仪,对数控机床进行体积误差检测的激光矢量测量新方法,该方法可以方便而快速的检测出机床的体积定位精度,包括3个定位误差,6个直线度误差和3个垂直度误差,同时还可以根据测量的体积定位误差数据生成误差补偿的代码,进而可以对其进行体积定位误差的补偿,大幅度提高了数控机床加工精度。  相似文献   

18.
利用参数设置诊断数控机床故障实例   总被引:2,自引:0,他引:2  
结合实践中的具体实例,介绍参数设置在数控机床故障维修中的重要性及其应用。  相似文献   

19.
A comprehensive method for measuring the systematic errors of CNC-machine tools has been studied. The method used for measurement and calibration of machine tool errors should be general and efficient. The objectives of this study include:
1.  Volumetric error modelling.
2.  Experimental procedure for error measurement.
3.  A tool position and path compensation method.
4.  The verification method.
Using the same method, the machine tool status can be completely identified and its accuracy can be enhanced by software error compensation. The point compensation method can be used as a means for modifying the nominal tool path and on-the-machine inspection where the machine tool is used as a coordinate measuring machine. The validity of the error calibration method proposed in this paper was shown using a vertical 3-axis CNC machine with a laser interferometer and a ball bar technique.  相似文献   

20.
加工中心的软件误差补偿技术   总被引:5,自引:1,他引:5  
文章基于多体系统运动学理论,根据数控机床实现精加工的必要充分条件推导出刀具路线、数控指令和刀具轨迹之间的关系,从逆运动学理论出发,提出了新的误差补偿思路。并针对北人集团的德国S-1500三轴立式龙门加工中心的生产实际,开展了大量的误差补偿实验。结果表明,运用作者提出的理论和方法,可使该机床的加工精度提高60%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号