首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three different treatments involving inoculation with Schizosaccharomyces pombe YGS-5 and Saccharomyces cerevisiae G1 strains were tested with a view to reducing the amount of gluconic acid in synthetic medium. The treatments involved (a) simultaneous inoculation with S. cerevisiae and S. pombe (SpSc); (b) depletion of gluconic acid with S. pombe and subsequent inoculation with S. cerevisiae following removal of S. pombe from the medium (Sp − Sp + Sc); and (c) as (b) but without removing S. pombe from the medium (Sp + Sc). The results thus obtained were compared with those for a control treatment involving fermentation with S. cerevisiae alone (Sc). The amounts of volatile compounds quantified in the fermented media were similar with the treatments where gluconic acid was previously depleted (viz.Sp − Sp + Sc and Sp + Sc). Amino acids were used in large amounts by S. pombe during removal of gluconic acid; this affected subsequent fermentation by S. cerevisiae and the formation of byproducts. Based on the gluconic acid uptake, fermentation kinetics, volatile composition and absence of off-flavours in the fermented media, both treatments (Sp − Sp + Sc and Sp + Sc) can be effectively used in winemaking processes to remove gluconic acid from must prior to fermentation.  相似文献   

2.
3.
A set of vectors was created to allow cloning and expression studies in Schizosaccharomyces pombe. These vectors had a uniform backbone with an efficient Sz. pombe ARS, ARS3002, but different selectable markers--his3+, leu1+, ade6+ and ura4+. The vectors functioned efficiently as autonomously replicating plasmids that could also be converted into integrating vectors. The ura4+-containing vector was used to construct a Sz. pombe genomic library.  相似文献   

4.
5.
Three Schizosaccharomyces pombe fragile mutants requiring the presence of an osmotic stabilizer to grow, that lyse when transferred into hypotonic solutions and that secrete to the extracellular medium more protein than the parental strain were isolated. In the three mutants, the fragile phenotype segregated in a Mendelian fashion, indicating a single chromosomal gene mutation, and behaved as a recessive character. By complementation analysis, the three fragile mutants fell in a single complementation group, defining the same gene (SRB1). Mutations of this gene are responsible for alterations in the cells such as fragile character, increase in the cell wall porosity, changes in the cell morphology and floc-forming ability. The study of the three srb1 alleles indicated that the degree of these alterations is proportional to a significant decrease in the galactomannan fraction of the mutants cell wall. The data presented in this report suggest that the product of the SRB1 gene is critical for the maintenance of the integrity and structure of Sz. pombe cell wall.  相似文献   

6.
In fission yeast, Schizosaccharomyces pombe, the carbohydrate components of the cell wall consist of galactomannan, unlike in Saccharomyces cerevisiae. We previously found that the disruption of gms1+, a gene encoding the UDP-galactose transporter required for the synthesis of galactomannan, led to the complete defect of cell surface galactosylation in Sz. pombe. The Deltagms1 strain is therefore useful for the analysis of physiological properties of galactose residues in Sz. pombe. The deletion strain of gms1+ was viable; however, itshowed an aberrant cell morphology and increased sensitivities to digestion with beta-glucanase and to various drugs, such as hygromycin B, sodium orthovanadate and Calcofluor white. A reduction of galactomannan layers of the cell wall in the Deltagms1 strain was observed by scanning and transmission electron microscopic analyses. The addition of osmotic stabilizer suppressed the morphologic defect of the Deltagms1 cells, while other phenotypes were weakly suppressed. The Deltagms1 (h90) strain was incapable of sexual conjugation during nutritional starvation. These results suggest that the cell surface galactosylation is required not only for non-sexual flocculation but also for sexual conjugation in Sz. pombe.  相似文献   

7.
8.
9.
Lactobacillus (Lb.) plantarum ST71KS was isolated from homemade goat feta cheese and identified using biochemical and molecular biology techniques. As shown by Tricine-SDS-PAGE, this lactic acid bacterium produces a bacteriocin (ST71KS) with an estimated molecular weight of 5.0 kDa. Bacteriocin ST71KS was not affected by the presence of α-amylase, catalase and remained stable in a wide range of pH and after treatment with Triton X-100, Triton X-114, Tween 20, Tween 80, NaCl, SDS, urea and EDTA. This bacteriocin also remained active after being heated at 100 °C for 2 h and even after 20 min at 121 °C; however, it was inactivated by proteolitic enzymes. Production of bacteriocin ST71KS reached 6400 AU/mL during stationary growth phase of Lb. plantarum cultivated in MRS at 30 °C and 37 °C. Bacteriocin ST71KS displayed a bactericidal effect against Listeria monocytogenes strains 603 and 607 and did not adsorb to the producer cells. Lb. plantarum ST71KS harbors two bacteriocin genes with homology to plantaricin S and pediocin PA-1. These characteristics indicate that bacteriocin ST71KS is a class IIa bacteriocin. The peptide presented no toxic effect when tested in vitro with kidney Vero cells, indicating safe technological application to control L. monocytogenes in foods.  相似文献   

10.
Bacilli and clostridia share the characteristic of forming metabolically inactive endospores. Spores are highly resistant to adverse environmental conditions including heat, and their ubiquitous presence in nature makes them inevitable contaminants of foods and food ingredients. Spores can germinate under favourable conditions, and the following outgrowth can lead to food spoilage and foodborne illness. Germination of spores has been best studied in Bacillus species, but the process of spore germination is less well understood in anaerobic clostridia. This paper describes a genome mining approach focusing on the genes related to spore germination of clostridia. To this end, 12 representative sequenced Bacillus genomes and 24 Clostridium genomes were analyzed for the distribution of known and putative germination-related genes and their homologues. Overall, the number of ger operons encoding germinant receptors is lower in clostridia than in bacilli, and some Clostridium species are predicted to produce cortex-lytic enzymes that are different from the ones encountered in bacilli. The in silico germination model constructed for clostridia was linked to recently obtained experimental data for selected germination determinants, mainly in Clostridium perfringens. Similarities and differences between germination mechanisms of bacilli and clostridia will be discussed.  相似文献   

11.
Exploiting the polymerase chain reaction, we have isolated a gene that encodes a putative phosphoinositide-specific phospholipase C (PLC) of the fission yeast Schizosaccharomyces pombe. Inspection of the nucleotide sequence of the gene revealed an open reading frame that can encode a polypeptide of 899 amino acid residues with a calculated molecular mass of 102 kDa. This putative polypeptide contains both the X and Y regions that are conserved among three classes of mammalian PLC, and also contains a presumptive Ca2+-binding site (an E-F hand motif). The structure of the putative protein is most similar to that of the δ class of PLC isozymes. To investigate the role of this gene, designated plc1+, gene disruption was carried out by interrupting the coding region with the ura4+ marker. Growth of plc1 cells was temperature-sensitive in rich medium, and cells could not grow in synthetic medium. Expression of the PLC1 gene of Saccharomyces cerevisiae suppressed the growth defect phenotype of plc1? cells, a strong suggestion that the plc1+ gene encodes PLC. The PLC1 sequence appears in the public data libraries, DDBJ GenBank, EMBL under the following Accession Number: D38309.  相似文献   

12.
The influence of phenolic (p-coumaric, caffeic, ferulic, gallic and protocatechuic) acids on glucose and organic acid metabolism by two strains of wine lactic acid bacteria (Oenococcus oeni VF and Lactobacillus hilgardii 5) was investigated. Cultures were grown in modified MRS medium supplemented with different phenolic acids. Cellular growth was monitored and metabolite concentrations were determined by HPLC-RI. Despite the strong inhibitory effect of most tested phenolic acids on the growth of O. oeni VF, the malolactic activity of this strain was not considerably affected by these compounds. While less affected in its growth, the capacity of L. hilgardii 5 to degrade malic acid was clearly diminished. Except for gallic acid, the addition of phenolic acids delayed the metabolism of glucose and citric acid in both strains tested. It was also found that the presence of hydroxycinnamic acids (p-coumaric, caffeic and ferulic) increased the yield of lactic and acetic acid production from glucose by O. oeni VF and not by L. hilgardii 5. The results show that important oenological characteristics of wine lactic acid bacteria, such as the malolactic activity and the production of volatile organic acids, may be differently affected by the presence of phenolic acids, depending on the bacterial species or strain.  相似文献   

13.
14.
Experimental data on the effects of Saccharomyces boulardii on rumen microbial metabolism are scarce. The aim of this study was to examine whether S. boulardii had an effect on parameters of rumen microbial metabolism at different dosages and whether the yeast would be suitable as a probiotic agent for ruminants. To test whether the potential positive effects of S. boulardii could be attributed to the yeast's viability or to its content of nutrients, living and autoclaved yeasts were tested simultaneously. For this purpose, incubation trials were carried out using the long-term rumen simulation technique. Living and autoclaved yeasts were added to fermentation vessels at a concentration of 0.5 or 1.5 g/d. The addition of living and autoclaved yeasts stimulated microbial metabolism, with no major differences between the treatments. It was concluded that ruminal microbes digested the supplied yeast of S. boulardii as an additional substrate and that S. boulardii, at least in ruminants, is utilized as a prebiotic rather than as a probiotic agent.  相似文献   

15.
From the fission yeast Schizosaccharomyces pombe we have identified and deleted vps33, a gene encoding a homologue of VPS33, which is required for vacuolar biogenesis in S. cerevisiae cells. When the vps33(+) gene is disrupted, Sz. pombe strains are temperature-sensitive for growth and contain numerous small vesicular structures stained with FM4-64 in the cells. Deletion of the Sz. pombe vps33(+) gene results in pleiotropic phenotypes consistent with the absence of normal vacuoles, including missorting of vacuolar carboxypeptidase Y, various ion- and drug-sensitivities, and sporulation defects. These results are consistent with Vps33p being necessary for the morphogenesis of vacuoles and subsequent expression of vacuolar functions in Sz. pombe cells.  相似文献   

16.
The synthesis of mevalonate, a molecule required for both sterol and isoprene biosynthesis in eukaryotes, is catalysed by 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Using a gene dosage approach, we have isolated the gene encoding HMG-CoA reductase, hmg1+, from the fission yeast Schizosaccharomyces pombe (Accession Number L76979). Specifically, hmg1+ was isolated on the basis of its ability to confer resistance to lovastatin, a competitive inhibitor of HMG-CoA reductase. Gene disruption analysis showed that hmg1+ was an essential gene. This result provided evidence that, unlike Saccharomyces cerevisiae, S. pombe contained only a single functional HMG-CoA reductase gene. The presence of a single HMG-CoA reductase gene was confirmed by genomic hybridization analysis. As observed for the S. cerevisiae HMG1p, the hmg1+ protein induced membrane proliferations known as karmellae. A previously undescribed ‘feed-forward’ regulation was observed in which elevated levels of HMG-CoA synthase, the enzyme catalysing the synthesis of the HMG-CoA reductase substrate, induced elevated levels of hmg1+ protein in the cell and conferred partial resistance to lovastatin. The amino acid sequences of yeast and human HMG-CoA reductase were highly divergent in the membrane domains, but were extensively conserved in the catalytic domains. We tested whether the gene duplication that produced the two functional genes in S. cerevisiae occurred before or after S. pombe and S. cerevisiae diverged by comparing the log likelihoods of trees specified by these hypotheses. We found that the tree specifying post-divergence duplication had significantly higher likelihood. Moreover, phylogenetic analyses of available HMG-CoA reductase sequences also suggested that the lineages of S. pombe and S. cerevisiae diverged approximately 420 million years ago but that the duplication event that produced two HMG-CoA reductase genes in the budding yeast occurred only approximately 56 million years ago. To date, S. pombe is the only unicellular eukaryote that has been found to contain a single HMG-CoA reductase gene. Consequently, S. pombe may provide important opportunities to study aspects of the regulation of sterol biosynthesis that have been difficult to address in other organisms and serve as a test organism to identify novel therapies for modulating cholesterol synthesis.  相似文献   

17.
The fission yeast model system Schizosaccharomyces pombe is used to study fundamental biological processes. To continue to fill gaps in the Sz. pombe gene deletion collection, we constructed a set of 90 haploid gene deletion strains covering many previously uncharacterized genes. To begin to understand the function of these genes, we exposed this collection of strains to a battery of stress conditions. Using this information in combination with microscopy, proteomics and mini‐chromosome loss assays, we identified genes involved in cell wall integrity, cytokinesis, chromosome segregation and DNA metabolism. This subset of non‐essential gene deletions will add to the toolkits available for the study of biological processes in Sz. pombe. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The uracil permease gene of Schizosaccharomyces pombe was cloned and sequenced. The deduced protein sequence shares strong similarities with five open reading frames from Saccharomyces cerevisiae, namely the uracil permease encoded by the FUR4 gene, the allantoin permease encoded by DAL4, a putative uridine permease (YBL042C) and two unknown ORFs YOR071c and YLR237w. A topological model retaining ten transmembrane helices, based on predictions and on experimental data established for the uracil permease of S. cerevisiae by Galan and coworkers (1996), is discussed for the four closest proteins of this family of transporters. The sequence of the uracil permease gene of S. pombe has been deposited in the EMBL data bank under Accession Number X98696. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号