首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Wei H  Li SF 《Analytical chemistry》1998,70(23):5097-5102
In this paper, the construction and performance of a rugged device for postcolumn derivatization in capillary electrophoresis (CE) are described. The device was based on a gap design, and a gap with a very small distance (<3 μm, estimated under microscope) could be easily constructed without micromanipulation. Addition of derivatizing reagents into the reaction capillary was attributable to gravity flow. The concentration of derivatizing reagents can be controlled through manipulating the electroosmotic flow in the reaction capillary and the height of the liquid levels from the derivatizing reagents to the buffer reservoirs. The device has been applied in fluorescence detection of amino acids using a mixture of o-phthaldialdehyde/2-mercaptoethanol as derivatizing reagent. Theoretical plate numbers for 11 amino acids separated in a pH 9.5 borate buffer were obtained in the order of 40?000-250?000. The detection limit for glycine (S/N = 2) was found to be 6.7 × 10(-)(7) mol/L using a commercial HPLC fluorescence detector modified for CE. Free amino acids in a wine sample were also determined. Because the device is quite stable, we believe that it can be used routinely in analytical laboratories.  相似文献   

2.
Wang J  Tian B  Sahlin E 《Analytical chemistry》1999,71(17):3901-3904
An on-chip electrochemical detector for micromachined capillary electrophoresis (CE) systems, based on sputtering a gold working electrode directly onto the capillary outlet, is described. The new on-chip detector preparation requires no microfabrication or alignment procedures nor a decoupling mechanism. The attractive performance of the integrated electrophoresis chips/amperometric detection was demonstrated for the anodic detection of neurotransmitters. The response for dopamine was linear from 20 to 200 μM, with a LOD of 1.0 μM and a sensitivity of 52 pA/μM. Such intimate coupling of capillary electrophoresis chips and electrochemical detection facilitates the realization of complete integrated microanalytical devices.  相似文献   

3.
The surface morphology of dry etched crystalline quartz was studied by transmission electron microscopy (replica technique). The experiments were carried out by reactive ion etching (RIE), plasma etching and argon sputter etching. Argon sputter etching does not alter the sample surface. RIE and plasma etching lead to surface roughness when an aluminum electrode is used. The cone-like asperities produced, typical of the beginning of etching, develop into island-like relief during a longer experiment. It is concluded that the surface roughness is caused by the combined action of backscattering of aluminum particles and their protecting effect in a CF4 plasma.  相似文献   

4.
Postcolumn derivatization reactions can enhance detector sensitivity and selectivity, but their successful combination with capillary liquid chromatography has been limited because of the small peak volumes in capillary chromatography. A capillary Taylor reactor (CTR), developed in our laboratory, provides simple and effective mixing and reaction in a 25-microm-radius postcolumn capillary. Homogenization of reactant streams occurs by radial diffusion, and a chemical reaction follows. Three characteristic times for a given reaction process can be predicted using simple physical and chemical parameters. Two of these times are the homogenization time, which governs how long it takes the molecules in the analyte and reagent streams to mix, and the reaction time, which governs how long the molecules in a homogeneous solution take to react. The third characteristic time is an adjustment to the reaction time called the start time, which represents an estimate of the average time the analyte stream spends without exposure to reagent. In this study, laser-induced fluorescence monitored the extent of the postcolumn reaction (reduction of Os(bpy)3(3+) by analyte to the photoluminescent Os(bpy)3(2+)) in a CTR. The reaction time depends on the reaction rates. Analysis of product versus time data yielded second-order reaction rate constants between the PFET reagent, tris(2,2'-bipyridine)osmium, and standards ((ferrocenylmethyl)trimethylammonium cation and p-hydroquinone) or catechols (dopamine, epinephrine, norepinephrine, 3, 4-dihydroxyphenylacetic acid. The extent of the reactions in a CTR were then predicted from initial reaction conditions and compared to experimental results. Both the theory and experimental results suggested the reactions of catechols were generally kinetically controlled, while those of the standards were controlled by mixing time (1-2 s). Thus, the extent of homogenization can be monitored in a CTR using the relatively fast reaction of the reagent and p-hydroquinone. Kinetically controlled reactions of catechols, however, could be also completed in a reasonable time at increased reagent concentration. A satisfactory reactor, operating at 1.7 cm/s (2 microL/min) velocity with solutes having diffusion coefficients in the 5 x 10(-6) cm2/s range, can be constructed from 8.0 cm of 25-microm-radius capillary. Slower reactions require longer reaction times, but theoretical calculations expect that a CTR does not broaden a chromatographic peak (N = 14 000) from a 100-microm-capillary chromatography column by 10% if the pseudo-first-order rate constant is larger than 0.1 s(-1).  相似文献   

5.
6.
It is desirable to have inexpensive, high-throughput systems that integrate multiple sample analysis processes and procedures, for applications in biology, chemical analysis, drug discovery, and disease screening. In this paper, we demonstrate multilayer polymer microfluidic devices with integrated on-chip labeling and parallel electrophoretic separation of up to eight samples. Microchannels were distributed in two different layers and connected through interlayer through-holes in the middle layer. A single set of electrophoresis reservoirs and one fluorescent label reservoir address parallel analysis units for up to eight samples. Individual proteins and a mixture of cancer biomarkers have been successfully labeled on-chip and separated in parallel with this system. A detection limit of 600 ng/mL was obtained for heat shock protein 90. Our integrated on-chip labeling microdevices show great potential for low-cost, simplified, rapid, and high-throughput analysis.  相似文献   

7.
Ro KW  Lim K  Shim BC  Hahn JH 《Analytical chemistry》2005,77(16):5160-5166
We have developed an integrated light collimating system with a microlens and a pair of slits for extended optical path length absorbance detection in a capillary electrophoresis (CE) microchip. The collimating system is made of the same material as the chip, poly(dimethylsiloxane) (PDMS), and it is integrated into the chip during the molding of the CE microchannels. In this microchip, the centers of an extended 500-microm detection cell and two optical fibers are self-aligned, and a planoconvex microlens (r = 50 microm) for light collimation is placed in front of a light-delivering fiber. To block stray light, two rectangular apertures, realized by a specially designed three-dimensional microchannel, are made on each end of the detection cell. In comparison to conventional extended detection cell having no collimator, the percentage of stray radiation readout fraction in the collimator integrated detection cell is significantly reduced from 31.6 to 3.8%. The effective optical path length is increased from 324 to 460 microm in the collimator integrated detection cell. The detection sensitivity is increased by 10 times in the newly developed absorbance detection cell as compared to an unextended, 50-microm-long detection cell. The concentration detection limit (S/N = 3) for fluorescein in the collimator integrated detection cell is 1.2 microM at the absorbance detection limit of 0.001 AU.  相似文献   

8.
A simple sequential injection capillary electrophoresis (SI-CE) instrument with capacitively coupled contactless conductivity detection (C(4)D) has been developed for the rapid separation of anions relevant to the identification of inorganic improvised explosive devices (IEDs). Four of the most common explosive tracer ions, nitrate, perchlorate, chlorate, and azide, and the most common background ions, chloride, sulfate, thiocyanate, fluoride, phosphate, and carbonate, were chosen for investigation. Using a separation electrolyte comprising 50 mM tris(hydroxymethyl)aminomethane, 50 mM cyclohexyl-2-aminoethanesulfonic acid, pH 8.9 and 0.05% poly(ethyleneimine) (PEI) in a hexadimethrine bromide (HDMB)-coated capillary it was possible to partially separate all 10 ions within 90 s. The combination of two cationic polymer additives (PEI and HDMB) was necessary to achieve adequate selectivity with a sufficiently stable electroosmotic flow (EOF), which was not possible with only one polymer. Careful optimization of variables affecting the speed of separation and injection timing allowed a further reduction of separation time to 55 s while maintaining adequate efficiency and resolution. Software control makes high sample throughput possible (60 samples/h), with very high repeatability of migration times [0.63-2.07% relative standard deviation (RSD) for 240 injections]. The separation speed does not compromise sensitivity, with limits of detection ranging from 23 to 50 μg·L(-1) for all the explosive residues considered, which is 10× lower than those achieved by indirect absorbance detection and 2× lower than those achieved by C(4)D using portable benchtop instrumentation. The combination of automation, high sample throughput, high confidence of peak identification, and low limits of detection makes this methodology ideal for the rapid identification of inorganic IED residues.  相似文献   

9.
Glass microchips, integrating chemical derivatization reactions, electrophoretic separations, and amperometric detection, have been developed. The performance of the new integrated microfabricated devices is demonstrated for rapid on-chip measurements of amino acids utilizing precolumn reactions of amino acids with o-phthaldialdehyde/2-mercaptoethanol to generate electroactive derivatives that are separated electrophoretically and detected at the end-column electrochemical detector. The influence of the sample/reagent mixing ratio, reagent concentrations, driving voltage, detection potential, and other variables is explored. The integrated microsystem offers a rapid (6 min) simultaneous measurements of eight amino acids, down to approximately 2.5 x 10(-6) M (5 fmol) level, with linearity up to the 2 x 10(-4) M level examined, and good reproducibility (RSD = 2.2-2.7%). A step of the driving voltage is used for decreasing the migration time of late-eluting components and reducing the overall analysis time. The integrated microfabricated device expands the scope of on-chip electrochemical detection to nonelectroactive analytes and holds promise of being a powerful analytical tool.  相似文献   

10.
A simple and efficient sample preconcentration method for capillary electrophoresis has been developed using liquid-phase microextraction (LPME). A thin layer of an organic liquid was used to separate a drop of the aqueous acceptor phase hanging at the inlet of a capillary from the bulk aqueous donor phase. The donor-phase pH was 1.0, and the acceptor phase pH was 9.5. This pH difference caused the preconcentration of the acidic compounds, fluorescein and fluorescein isothiocyanate, into the acceptor-phase drop. Enrichment factors of 3 orders of magnitude were obtained with 30-min LPME at 35 degrees C.  相似文献   

11.
Qiu H  Yan J  Sun X  Liu J  Cao W  Yang X  Wang E 《Analytical chemistry》2003,75(20):5435-5440
This paper describes an indium tin oxide (ITO) electrode-based Ru(bpy)3(2+) electrochemiluminecence (ECL) detector for a microchip capillary electrophoresis (CE). The microchip CE-ECL system described in this article consists of a poly(dimethylsiloxane) (PDMS) layer containing separation and injection channels and an electrode plate with an ITO electrode fabricated by a photolithographic method. The PDMS layer was reversibly bound to the ITO electrode plate, which greatly simplified the alignment of the separation channel with the working electrode and enhanced the photon-capturing efficiency. In our study, the high separation electric field had no significant influence on the ECL detector, and decouplers for isolating the separation electric field were not needed in the microchip CE-ECL system. The ITO electrodes employed in the experiments displayed good durability and stability in the analytical procedures. Proline was selected to perform the microchip device with a limit of detection of 1.2 microM (S/N = 3) and a linear range from 5 to 600 microM.  相似文献   

12.
A microfabricated device has been developed in which electrospray ionization is performed directly from the corner of a rectangular glass microchip. The device allows highly efficient electrokinetically driven separations to be coupled directly to a mass spectrometer (MS) without the use of external pressure sources or the insertion of capillary spray tips. An electrokinetic-based hydraulic pump is integrated on the chip that directs eluting materials to the monolithically integrated spray tip. A positively charged surface coating, PolyE-323, is used to prevent surface interactions with peptides and proteins and to reverse the electroosmotic flow in the separation channel. The device has been used to perform microchip CE-MS analysis of peptides and proteins with efficiencies over 200,000 theoretical plates (1,000,000 plates/m). The sensitivity and stability of the microfabricated ESI source were found to be comparable to that of commercial pulled fused-silica capillary nanospray sources.  相似文献   

13.
Wei W  Yeung ES 《Analytical chemistry》2002,74(15):3899-3905
A novel approach for on-line concentration of proteins and peptides in capillary electrophoresis (CE) is presented. A short section (approximately 0.5-1 cm) along the capillary was etched with HF. The etched section became a porous membrane that allowed electrical conductivity but prevented passage of the analyte ions. The capillary was isolated into two parts by the etched section. Thus, we were able to use three buffer vials to perform CE experiments in the capillary by applying high voltages independently. Concentration and separation were performed at the two respective regions. When high voltage was applied to the concentration capillary (between the inlet end and the etched section), proteins and peptides were concentrated at the etched portion, because the porous capillary wall allowed only small buffer ions to pass through and there was no electric field gradient beyond that point. After focusing, the narrow sample zone was introduced into the separation capillary (between the etched section and the outlet end) by hydrodynamic flow or by electroosmotic flow. Finally, conventional CE was carried out for separation of the analytes. Several different concentration schemes for proteins and peptides were successfully demonstrated by using this new approach.  相似文献   

14.
The development of a new assay for lipoproteins by capillary electrophoresis in fused-silica capillaries and in glass microdevices is described in this paper. The separation of low-density (LDL) and high-density (HDL) lipoproteins by capillary zone electrophoresis is demonstrated in fused-silica capillaries with both UV absorption and laser-induced fluorescence detection. This separation was accomplished using Tricine buffer (pH 9.0) with methylglucamine added as a dynamic coating. With UV detection, LDL eluted as a relatively sharp peak with a migration time of approximately 11 min and HDL eluted as a broad peak with a migration time of 12.5 min. Fluorescence detection of lipoproteins stained with NBD-ceramide was used with the same buffer system to give comparable results. Furthermore, fluorescence staining of human serum samples yielded results similar to the fluorescently stained LDL and HDL fractions, showing that this method can be used to quantify lipoproteins in serum samples. The method was also used to detect lipoproteins in glass micro-CE devices. Very similar results were obtained in microdevices although with much faster analysis times, LDL eluted as a sharp peak at approximately 25 s and HDL as a broad peak at slightly longer time. In addition, higher resolution was obtained on chips. To our knowledge, these results show the first separation and detection of lipoproteins in a microfluidic device using native serum samples. Atomic force microscopy was used to characterize the rms surface roughness (Rq) of microfluidic channels directly. Devices with different surface roughness values were fabricated using two different etchants for Pyrex wafers with a polysilicon masking layer. Using 49% HF, the measured roughness is Rq = 10.9 +/- 1.6 nm and with buffered HF (NH4F + HF) the roughness is Rq = 2.4 +/- 0.7 nm. At this level of surface roughness, there is no observable effect on the performance of the devices for this lipoprotein separation.  相似文献   

15.
Dielectrophoresis of single microbioparticles was measured in a planar quadrupole microelectrode (50 mum or 65 mum in working area radius) with a microscope. Carbon and polystyrene microparticles, yeast cells and DNA molecules (about 40 kbp) were adopted as a sample. Their dielectrophoretic mobilities were analysed quantitatively with their intrinsic and surface conductivity, their permittivities and their sizes as well as the conductivity and permittivity of aqueous media. Using the dielectrophoretic mobilities obtained with the planar quadrupole microelectrode, some instances of the separation performance between the microparticles were demonstrated with a fabricated capillary quadrupole microelectrode (82.5 mum in bore radius) under the field flow fractionation regime.  相似文献   

16.
A novel injection method is developed that utilizes a thermally switchable oligonucleotide affinity capture gel to mediate the concentration, purification, and injection of dsDNA for quantitative microchip capillary electrophoresis analysis. The affinity capture matrix consists of a 20 base acrydite modified oligonucleotide copolymerized into a 6% linear polyacrylamide gel that captures ssDNA or dsDNA analyte including PCR amplicons and synthetic oligonucleotides. Double stranded PCR amplicons with complementarity to the capture probe up to 81 bases from their 5' terminus are reproducibly captured via helix invasion. By integrating the oligo capture matrix directly with the CE separation channel, the electrophoretically mobilized target fragments are quantitatively captured and injected after thermal release for unbiased, efficient, and quantitative analysis. The capture process exhibits optimal efficiency at 44 degrees C and 100 V/cm with a 20 microM affinity capture probe (TM = 57.7 degrees C). A dsDNA titration assay with 20 bp fragments validated that dsDNA is captured at the same efficiency as ssDNA. Dilution studies with a duplex 20mer show that targets can be successfully captured and analyzed with a limit of detection of 1 pM from 250 nL of solution (approximately 150,000 fluorescent molecules). Simultaneous capture and injection of amplicons from E. coli K12 and M13mp18 using a mixture of two different capture probes demonstrates the feasibility of multiplex target capture. Unlike the traditional cross-injector, this method enables efficient capture and injection of dsDNA amplicons which will facilitate the quantitative analysis of products from integrated nanoliter-scale PCR reactors.  相似文献   

17.
The control of electroosmotic flow by electronic means for capillary zone electrophoresis is presented. This is accomplished by the application of a radial voltage field with a rugged and flexible conductive polymer sheath. Fundamental theory for effect of the applied radial voltage on electroosmotic flow is developed. In addition, the effects of surface pretreatments are examined and compared to trends predicted by the theory.  相似文献   

18.
A novel capillary NMR coupling configuration, which offers the possibility of combining capillary zone electrophoresis (CZE), capillary HPLC (CHPLC), and for the first time capillary electrochromatography (CEC) with nuclear magnetic resonance (NMR), has been developed. The hyphenated technique has a great potential for the analysis of chemical, pharmaceutical, biological, and environmental samples. The versatile system allows facile changes between these three different separation methods. A special NMR capillary containing an enlarged detection cell suitable for on-line NMR detection and measurements under high voltage has been designed. The acquisition of 1D and 2D NMR spectra in stopped-flow experiments is also possible. CHPLC NMR has been performed with samples of hop bitter acids. The identification and structure elucidation of humulones and isohumulones by on-line and stopped-flow spectra has been demonstrated. The suitability of the configuration for electrophoretic methods has been investigated by the application of CZE and CEC NMR to model systems.  相似文献   

19.
We describe here an electrochemical cell ideal for routine analysis of CE-EC experiments (capillary electrophoresis coupled with electrochemical detection). The cell was modified from a fiber-optic connector, named MT, which allowed frequent change and fast alignment between a pair of 4-strand fiber ribbons. The relative standard deviations of the current response and migration time for 100 microM dopamine were, respectively, 3.7 and 0.5% in five repetitive routines of disconnecting, polishing, and assembling the CE cell. The time required for alignment of the separation capillary and the working electrode was < 10 s, once all components were assembled in an MT fiber-optic plug. These features enabled CE-EC users to polish the working electrode and reassemble the EC cell as in HPLC-EC. However, to accommodate the channel dimensions of the commercially available MT, a special order capillary with outer diameter of 125 microm is necessary at this stage.  相似文献   

20.
While temperature control is usually employed in capillary electrophoresis (CE) to aid heat dissipation and provide acceptable precision, internal electrolyte temperatures are almost never measured. In principle, this limits the accuracy, repeatability, and method robustness. This work presents a fundamental study that combines the development of new equations characterizing temperature profiles in CE with a new method of temperature determination. New equations were derived from first principles relating the mean, axial, and inner wall electrolyte temperatures (T(Mean), T(Axis), T(Wall)). T(Mean) was shown to occur at a distance 1/ radical3 times the internal radius of the capillary from the center of the capillary and to be a weighted average of (2/3)T(Axis) and (1/3)T(Wall). Conductance (G) and electroosmotic mobility (mu(EOF)) can be used to determine T(Mean) and T(Wall), respectively. Extrapolation of curves of mu(EOF) versus power per unit length (P/L) at different temperatures was used to calibrate the variation of mu(EOF) with temperature (T), free from Joule heating effects. mu(EOF) increased at 2.22%/ degrees C. The experimentally determined temperatures using mu(EOF) agreed to within 0.2 degrees C with those determined using G. The accuracy of G measurements was confirmed independently by measuring the electrical conductivity (kappa) of the bulk electrolyte over a range of temperatures and by calculating the variation of G with T from the Debye-Hückel-Onsager equation. T(Mean) was found to be up to 20 degrees C higher than the external temperature under typical conditions using active air-cooling and a 74.0-microm-internal diameter (di) fused-silica capillary. A combination of experimentally determined and calculated temperatures enables a complete temperature profile for a fused-silica capillary to be drawn and the thickness of the stationary air layer to be determined. As an example, at P/L = 1.00 Wm(-1), the determined radial temperature difference across the electrolyte was 0.14 degrees C; the temperature difference across the fused-silica wall was 0.17 degrees C, across the poly(imide) coating was 0.13 degrees C, and across the stationary air layer was 2.33 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号