首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A disposable glucose biosensor based on glucose oxidase immobilized on tetrathiafulvalene-tetracyanoquinodimethane (ITF-TCNQ) conducting organic salt synthesized in situ onto an overoxidized poly(pyrrole) (PPy(ox).) film is described. The TIF-TCNQ crystals grow through the nonconducting polypyrrole film (ensuring electrical connection to the underlying Pt electrode) and emerge from the film forming a treelike structure. The PPy(ox) film prevents the interfering substances from reaching the electrode surface. The sensor behavior can be modeled by assuming a direct reoxidation of the enzyme at the surface of the TTF-TCNQ crystals. A heterogeneous rate constant around 10(-6) - 10(-7) cm s(-1) has been estimated. The biosensor is nearly oxygen- and interference-free and when integrated in a flow injection system displays a remarkable sensitivity (70 nA/mM) and stability.  相似文献   

2.
A novel electrochemical strategy that uses DNA-wrapped carbon nanotubes (CNTs) as electrochemical labels is developed for sensitive and selective detection of sequence-specific DNA. The presence of target DNA mediates the formation of a sandwiched complex between the DNA-wrapped CNT and a hairpin DNA capture probe immobilized on magnetic beads. This allows target-selective collection of the CNT labels by magnetic separation and transfer on the electrode surface modified with an insulating self-assembled monolayer (SAM). After treatment with N,N-dimethylformamide, the collected sandwiched complex releases the bare CNTs and facilitates the removal of magnetic beads from the electrode surface. The bare CNTs can then assemble on the SAM-modified electrode surface and mediate efficient electron transfer between the electrode and the electroactive species in the solution with a strong current signal generated. The results indicate that the developed strategy shows a sensitive response to target DNA with a desirable signal gain and a low detection limit of 0.9 pM. This strategy is also demonstrated to provide excellent differentiation of single-base mismatch in target DNA. It is expected that this electrochemical strategy may hold great potential as a novel platform for clinical diagnostics and genetic analysis.  相似文献   

3.
An efficient, site-specific and scalable approach has been developed to produce high-quality and individually addressable conducting polymer nanowire electrode junctions (CPNEJs) in a parallel-oriented array. Polypyrrole and PEDOT conducting polymer nanowires (CPNWs) with uniform diameters (ca. 60-150?nm) were introduced into the desired electrode junctions in a precise manner by performing a three-step constant-current electrochemical process at a low current density and a low concentration of monomers. A low scan rate, cyclic voltammetric method was also employed and gave similar results. These CPNEJ arrays function as a miniaturized sensor for the parallel and real-time detection of gas and organic vapour. The electrochemical approaches utilized allow the conducting polymer chains to self-organize in the CPNWs to form novel polycrystalline structures, observed by high resolution TEM. The weak diffraction rings at 4.88?? and 4.60?? were observed for PEDOT and polypyrrole CPNWs, respectively.  相似文献   

4.
聚吡咯膜电化学包埋固定酶及其复合酶生物传感器   总被引:4,自引:0,他引:4  
朱立平  陆云 《功能材料》2005,36(4):619-621
采用电化学包埋法成功地将乳酸脱氢酶固定化在聚吡咯膜上,获得了具有生物活性和电活性的聚吡咯乳酸脱氢酶导电膜,并进一步制备了用以测定丙酮酸的聚吡咯乳酸脱氢酶金电极生物传感器。同时尝试用电化学包埋法将乳酸脱氢酶和辅酶NADH同时固定化在聚吡咯膜上,获得了具有电化学活性的聚吡咯乳酸脱氢酶NADH 金复合酶电极。深入的实验证实了复合电极生物传感器具有线性的工作曲线。  相似文献   

5.
A particle-based renewable electrochemical magnetic immunosensor was developed by using magnetic beads and gold nanoparticle labels. Anti-IgG antibody-modified magnetic beads were attached to a renewable carbon paste transducer surface by magnet that was fixed inside the sensor. Gold nanoparticle labels were capsulated to the surface of magnetic beads by sandwich immunoassay. Highly sensitive electrochemical stripping analysis offers a simple and fast method to quantify the capatured gold nanoparticle tracers and avoid the use of an enzyme label and substrate. The stripping signal of gold nanoparticles is related to the concentration of target IgG in the sample solution. A transmission electron microscopy image shows that the gold nanoparticles were successfully capsulated to the surface of magnetic beads through sandwich immunoreaction events. The parameters of immunoassay, including the loading of magnetic beads, the amount of gold nanoparticle conjugate, and the immunoreaction time, were optimized. The detection limit of 0.02 microg ml(-1) of IgG was obtained under optimum experimental conditions. Such particle-based electrochemical magnetic immunosensors could be readily used for simultaneous parallel detection of multiple proteins by using multiple inorganic metal nanoparticle tracers and are expected to open new opportunities for disease diagnostics and biosecurity.  相似文献   

6.
For sensors detecting immobilized biomarkers, the interface between the surface and the fluid medium plays an important role in determining the levels of signal and noise in the electrochemical detection process. When protein is directly immobilized on the metal electrode, denaturation of the protein by surface–protein interaction results in low activity and low signal level. A conducting polymer‐based interface can prevent the protein conformation change and alleviate this problem. A DNA dendrimer is introduced into the interfacial film on the sensor surface to further improve the sensor performance. DNA dendrimer is a nanoscale dendrite constructed of short DNA sequences, which can be easily incorporated into the abiotic conducting polymer matrix and is biocompatible with most biological species. In this work, DNA dendrimer and polypyrrole (DDPpy) form the bio/abiotic interface on electrochemical sensors. Detection of two salivary protein markers (IL‐8 and IL‐1β) and one mRNA salivary marker (IL‐8) is used to demonstrate the efficiency of the DDPpy sensor. A limit of detection (LOD) of protein of 100–200 fg mL?1 is achieved, which is three orders of magnitude better than that without the DNA dendrimer interface. An LOD of 10 aM is established for IL‐8 mRNA. The typical sample volume used in the detection is 4 µL, thus the LOD reaches only 25 target molecules (40 yoctomole).  相似文献   

7.
To detect the target molecules, aptamers are currently focused on and the use of aptamers for biosensing is particularly interesting, as aptamers could substitute antibodies in bioanalytical sensing. So this paper describes the novel electrochemical system for protein in sandwich manner by using the aptamers and the scanning electrochemical microscope (SECM). For protein detection, sandwich system is ideal since labeling of the target protein is not necessary. To develop the electrochemical protein sensor system, thrombin was chosen as a target protein since many aptamers for it were already reported and two different aptamers, which recognize different positions of thrombin, were chosen to construct sandwich type sensing system. In order to obtain the electrochemical signal, the glucose oxidase (GOD) used for labeling the detection aptamers since it has large amount of stability in aqueous solution. One aptamer was immobilized onto the gold electrode and the other aptamer for detection was labeled with GOD for generation of the electric signal. Thrombin was detected in sandwich manner with aptamer immobilized onto the gold electrode and the GOD labeled aptamer. The enzymatic signal, generated from glucose addition after the formation of the complex of thrombin, was measured. The generation-collection mode of SECM was used for amperometric H2O2 detection.  相似文献   

8.
Zhang Z  Liu H  Deng J 《Analytical chemistry》1996,68(9):1632-1638
A high-performance amperometric glucose biosensor has been developed, based on immobilization of glucose oxidase in an electrochemically synthesized, nonconducting poly(o-aminophenol) film on a platinized glassy carbon electrode. The large microscopic surface area and porous morphology of the platinized glassy carbon electrode result in high enzyme loading, and the enzyme entrapped in the electrodeposited platinum microparticle matrix is stabler than that on a platinum disk electrode surface. The response current of the sensor is 20-fold higher than that of the sensor prepared with a platinum disk electrode of the same geometric area. The experiments showed that the high sensitivity of the sensor is due not only to the large microscopic area but also to the high efficiency of transformation of H(2)O(2) generated by enzymatic reaction to current signal on the platinized glassy carbon electrode. The response time of the sensor is <4 s, and its lifetime is >10 months.  相似文献   

9.
Electrochemical multianalyte immunoassays using an array-based sensor   总被引:1,自引:0,他引:1  
Wilson MS  Nie W 《Analytical chemistry》2006,78(8):2507-2513
A novel amperometric biosensor for performing simultaneous electrochemical multianalyte immunoassays is described. The sensor consisted of eight iridium oxide sensing electrodes (0.78 mm(2) each), an iridium counter electrode, and a Ag/AgCl reference electrode patterned on a glass substrate. Four different capture antibodies were immobilized on the sensing electrodes via adsorption. Quantification of proteins was achieved using an ELISA in which the electrochemical oxidation of enzyme-generated hydroquinone was measured. The spatial separation of the electrodes enabled simultaneous electrochemical immunoassays for multiple proteins to be conducted in a single assay without amperometric cross-talk between the electrodes. The simultaneous detection of goat IgG, mouse IgG, human IgG, and chicken IgY was demonstrated. The detection limit was 3 ng/mL for all analytes. The sensor had excellent precision (1.9-8.2% interassay CV) and was comparable in performance to commercial single-analyte ELISAs. We anticipate that chip-based sensors, as described herein, will be suitable for the mass production of economical, miniaturized, multianalyte assay devices.  相似文献   

10.
A novel strategy for elaborating a new biosensor for hydrogen peroxide has been developed by combining the known properties of microperoxidase 8 (MP8) as an oxidation catalyst, and the interesting properties of conducting polypyrrole as a supporting matrix to allow a good bioelectrochemical interface and a large dispersion of MP8 on the modified glassy carbon electrode.

MP8 was immobilized into the conducting polypyrrole by entrapment during the electrochemical polymerization, and the modified electrode was characterized both by electrochemical and FT-IR measurements. We demonstrated that MP8 could be immobilized into polypyrrole and could undergo an efficient electron transfer.

The obtained modified electrode showed a high catalytic activity toward H2O2 without the need for an electron mediator. A linear calibration curve was obtained by amperometric measurement at a potential of − 0.1 V/ECS for concentrations of H2O2 ranging from 1 to 10 μM. The detection limit obtained was 1 nM which constituted a real improvement, by about three orders of magnitude, when compared to the values reported for other systems using an electrochemical detection.  相似文献   


11.
A novel approach for eliminating positive errors from endogenous ionic interferences when using ion-selective electrodes as detectors in flow-injection enzyme-based blosensing configurations is described. The method involves using a high background level of interfering ions in the sample diluent/carrier stream to convert the normally logarithmic potentiometric sensor into a linear detector over a given concentration range of primary ions. A split-stream single-detector arrangement provides a convenient means to compensate for varying levels of background interferent ions in the injected samples. One portion of the split stream passes directly to the ion-electrode detector, yielding a signal linearly related to the concentration of endogenous primary ions in the sample. The second portion of the split sample is delayed while passing through an immobilized enzyme that generates electrode detectable primary ions in proportion to the concentration of the substrate analyte in the sample. Two linear equations with two unknowns describe the twin potentiometric responses observed. The concept is demonstrated by the accurate determination of L-glutamine in hybridoma bioreactor media via the use of an ammonium-ion-selective membrane electrode detector and immobilized glutaminase enzyme.  相似文献   

12.
A disposable immunomagnetic electrochemical sensor involving a magnetic particle-based solid phase and a Nafion film-coated screen-printed electrode (Nafion-SPE) stuck at the bottom of a polystyrene cylinder (microwell of 300 microL) was developed and evaluated in a competitive immunoassay of the widely used herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The competitive binding of 2,4-D and 2,4-D labled with alkaline phosphatase (AP) for a limited amount of polyclonal anti-2,4-D antibody-coated magnetic beads was monitored electrochemically by measuring the AP labled++ activity bound to the beads. The phosphoric acid ester of [[(4-hydroxyphenyl)amino]-carbonyl]cobaltocenium hexafluorophosphate was used as the AP substrate. This anionic substrate (S-) is enzymatically transformed at pH 9.0 into a cationic phenol derivative (P+) which can be easily accumulated in the polyanionic Nafion coating and determined by cyclic voltammetry. During the enzyme reaction, the AP-associated beads were localized on the surface of the Nafion-SPE with the aid of a magnet, thus effectively increasing the concentration of P+ in the Nafion-modified electrode vicinity. The enzyme generation of P+ close to the electrode surface, and thereby to the Nafion film, resulted in a high amplification of the response. A detection limit of 0.01 microgram L-1 2,4-D was thus achieved. The performance of the sensor was successfully evaluated on river water samples spiked with 2,4-D, indicating that this convenient and sensitive technique offers great promise for decentralized environmental applications.  相似文献   

13.
Methylamine dehydrogenase (MADH) has been immobilized in a polpyrrole (PPy) film on an electrode surface and used as an amine sensor for the determination of primary amines. Its response to histamine has been characterized in detail. The PPy film containing MADH was formed electrochemically on a gold minielectrode (1-mm diameter) in the presence of ferricyanide. The film was then coated with Nafion. This enzyme electrode did not require any additional cofactors and was not sensitive to oxygen. It exhibited a maximum response current to histamine at applied potentials of 0.24-0.33 V and at pH 7.5-8.5. This MADH-PPy sensor exhibited a response time of less than 3 s. The immobilized MADH on the electrode exhibited Michaelis-Menten behavior similar to that of the free enzyme in solution with a Km value of 1.3 mM. This sensor could be used to reliably detect histamine over a concentration range from approximately 25 microM to 4 mM. This is the first example of a biosensor that uses an immobilized enzyme that possesses the tryptophan tryptophylquinone prosthetic group.  相似文献   

14.
An electrical equivalent circuit is derived for the electrospray process. It is a series circuit which consists of the power supply, the electrochemical contact to the solution, the solution resistance (R(s)), a constant-current regulator which represents the processes of charge separation and charge transport in the gap between the spray needle aperture and the counter electrode, and charge neutralization at the counter electrode. A current i, established by the constant-current regulator flows throughout the entire circuit. Current-voltage curves are developed for each element in the circuit. From these it is shown that in the case where R(s) is negligible (the power supply is connected directly to a conducting needle) the shape of the current-voltage curve is dictated by the constant-current regulator established by the charge separation process, the gap, and the counter electrode. The solution resistance may be significant if a nonconducting needle is used so that the electrochemical contact to the solution is remote from the tip. Experiments with a nonconducting spray needle quantify the effect of the solution resistance on the current-voltage curve. Subtracting the iRs voltage from Vapp (power supply voltage) yields the current-voltage curve for the constant-current regulator. When iRs drop is a significant fraction of Vapp, the current-voltage curve of the constant-current regulator is changed substantially from the case when the solution resistance is negligible.  相似文献   

15.
A theoretical study was conducted using a multiple-voltage probe sensor for detecting nonconducting inclusions in conducting media. Results show that the multiple-voltage probe sensor is capable of providing precise quantitative measurements of submerged nonconducting objects if the surface voltage response has a standard two-peak form. The standard response is observed for well-localized non-slender single inclusions below the sensor surface. In this case, the peak separation distance is associated with the inclusion depth whereas the peak magnitude is associated with the inclusion volume. Linear dependencies of the inclusion depth and the inclusion volume are observed for a wide variety of inclusion shapes. The predefined form of the surface voltage response makes it feasible to identify useful signal responses at very high noise levels. This is accomplished by using a 2D neural network classifier, based on the probabilistic neural network. A reasonable recognition error of less than 20 % is obtained if the signal-to-noise ratio is larger than or equal to 1/10. A metal casting example shows that the multiple-voltage probe sensor can measure inclusion concentrations in hot conducting melts (gas bubbles and sludge) with inclusion radii in the range from 100 to 1000 m. In contrast to existing particle counter technology, this sensor construction is simple to construct and does not require special aperture and vacuum treatment.  相似文献   

16.
Hu C  Bai X  Wang Y  Jin W  Zhang X  Hu S 《Analytical chemistry》2012,84(8):3745-3750
A simple approach to the mass production of nanoporous gold electrode arrays on cellulose membranes for electrochemical sensing of oxygen using ionic liquid (IL) electrolytes was established. The approach, combining the inkjet printing of gold nanoparticle (GNP) patterns with the self-catalytic growth of these patterns into conducting layers, can fabricate hundreds of self-designed gold arrays on cellulose membranes within several hours using an inexpensive inkjet printer. The resulting paper-based gold electrode arrays (PGEAs) had several unique properties as thin-film sensor platforms, including good conductivity, excellent flexibility, high integration, and low cost. The porous nature of PGEAs also allowed the addition of electrolytes from the back cellulose membrane side and controllably produced large three-phase electrolyte/electrode/gas interfaces at the front electrode side. A novel paper-based solid-state electrochemical oxygen (O(2)) sensor was therefore developed using an IL electrolyte, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF(6)). The sensor looked like a piece of paper but possessed high sensitivity for O(2) in a linear range from 0.054 to 0.177 v/v %, along with a low detection limit of 0.0075% and a short response time of less than 10 s, foreseeing its promising applications in developing cost-effective and environment-friendly paper-based electrochemical gas sensors.  相似文献   

17.
We here report on a concept for creating well-defined electric field gradients between the boundaries of capillary electrode (a capillary of a nonconducting material equipped with an interior metal electrode) outlets, and dielectric surfaces. By keeping a capillary electrode opening close to a boundary between a conducting solution and a nonconducting medium, a high electric field can be created close to the interface by field focusing effects. By varying the inner and outer diameters of the capillary, the span of electric field strengths and the field gradient obtained can be controlled, and by varying the slit height between the capillary rim and the surface, or the applied current, the average field strength and gradient can be varied. Field focusing effects and generation of electric field patterns were analyzed using finite element method simulations. We experimentally verified the method by electroporation of a fluorescent dye (fluorescein diphosphate) into adherent, monolayered cells (PC-12 and WSS-1) and obtained a pattern of fluorescent cells corresponding to the focused electric field.  相似文献   

18.
Immunosensors show great potential for the direct detection of biological molecules. The sensitivity of these affinity-based biosensors is dictated by the amount of receptor molecules immobilized on the sensor surface. An enlargement of the sensor area would allow for an increase of the binding capacity, hence a larger amount of immobilized receptor molecules. To this end, we use electrochemically deposited "gold black" as a porous sensor surface for the immobilization of proteins. In this paper, we have analyzed the different parameters that define the electrochemical growth of porous gold, starting from flat gold surfaces, using different characterization techniques. Applied potentials of -0.5 V versus a reference electrode were found to constitute the most adequate conditions to grow porous gold surfaces. Using cyclic voltammetry, a 16 times increase of the surface area was observed under these electrochemical deposition conditions. In addition, we have assessed the immobilization degree of alkanethiols and of proteins on these different porous surfaces. The optimized deposition conditions for realizing porous gold substrates lead to a 11.4-fold increase of thiol adsorption and a 3.3-fold increase of protein adsorption, using the quartz crystal microbalance (QCM-D) as a biological transducer system. Hence, it follows that the high specific area of the porous gold can amplify the final sensitivity of the original flat surface device.  相似文献   

19.
Modified electrodes with metal or metal oxides nanoparticles are particularly appealing to improve sensor performances and fabricate miniaturized devices, as required also in glucose detection. A Pt electrode modified by drop casting of a novel nanostructured film based on silver nanoparticles (Ag-NPs) capped in a commercial nontoxic polyvinyl alcohol (PVA) matrix is proposed here as a valid alternative to classical glucose (bio)sensors. The extensive electrochemical and spectroscopic characterization by X-ray Photoelectron Spectroscopy (XPS) of this advanced nanomaterial is presented to study its response to glucose and to investigate the chemical nature of deposited Ag.  相似文献   

20.
Roy S  Vedala H  Choi W 《Nanotechnology》2006,17(4):S14-S18
Detection of blood cholesterol is of great clinical significance. The amperometric detection technique was used for the enzymatic assay of total cholesterol. Multiwall carbon nanotubes?(MWNTs), vertically aligned on a silicon platform, promote heterogeneous electron transfer between the enzyme and the working electrode. Surface modification of the MWNT with a biocompatible polymer, polyvinyl alcohol?(PVA), converted the hydrophobic nanotube surface into a highly hydrophilic one, which facilitates efficient attachment of biomolecules. The fabricated working electrodes showed a linear relationship between cholesterol concentration and the output signal. The efficacy of the multiwall carbon nanotubes in promoting heterogeneous electron transfer was evident by distinct electrochemical peaks and higher signal-to-noise ratio as compared to the Au electrode with identical enzyme immobilization protocol. The selectivity of the cholesterol sensor in the presence of common interferents present in human blood, e.g.?uric?acid, ascorbic acid and glucose, is also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号