首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel and cost-effective electrostatic spray-assisted vapor deposition (ESAVD) was used to deposit Y3Al5O12 (YAG) coatings. Polycrystalline single-phase Y3Al5O12 coatings were synthesized using the ESAVD method in an open atmosphere at 650°C, and then annealed at 700°–900°C for 1 h. The ESAVD process involves the decomposition and chemical reactions of charged aerosol in vapor phase. The low-temperature coating deposition characteristics of the ESAVD process using a suitable sol precursor decreases the reaction and crystallization temperatures for forming Y3Al5O12 coatings. The microstructure of the Y3Al5O12 coating prepared using the ESAVD method is columnar and such strain-resistance microstructure could be useful for thermal barrier coating applications.  相似文献   

2.
Properties of glasses in the system Y2O3–Al2O3–SiO2 containing Na2O and ZrO2 were investigated. The difference between the thermal expansion coefficients (Δα) at temperatures above T g and those below T g, microhardness, density, and chemical durability were measured in relation to the Al2O3/Y2O3 molar ratio. These glasses were found to have a smaller value of Δα than that of a commercial coating glass.  相似文献   

3.
The interfacial debond characteristics of sputtered Al2O3 and Y2O3, coating were assessed in a γ-TiAl/Nb composite. The preferred debond coating identified for this composite system was Y2O3, which also protected the ductile reinforcing phase from reaction with the matrix. Tension tests on a model laminate specimen were performed to characterize the toughening behavior and showed that interfacial debonding promoted extensive plastic deformation of the ductile phase over a large volume. The coatings were characterized to understand the debonding behavior. Comparison is made with other metal/oxide system.  相似文献   

4.
Yttrium silicate (Y2SiO5) coatings complement SiC coatings for protecting ceramic multilayer composite materials based on carbon-fiber-reinforced SiC composites (C-SiC). Thick (100 μm), dense Y2SiO5 coatings were prepared by dip coating, using concentrated aqueous slips. The resulting phases were studied by taking into account the simultaneous presence of oxide and non-oxide materials, which affected the chemical stability of the coatings. Thick, mechanically stable coatings were obtained by sintering in carbon crucibles and a SiC bed in an argon-flow furnace. Pure Y2SiO5 coatings completely separated from the SiC substrates. A high percentage of Y2Si2O7 was necessary to fit the thermal expansion coefficients and ensure the stability of the coatings. Oxidation resistance of the coated substrates was investigated by isothermal and stepwise oxidation tests.  相似文献   

5.
Water-Based Gelcasting of Surface-Coated Silicon Nitride Powder   总被引:1,自引:0,他引:1  
A layer of Y2O3–Al2O3, used as a sintering aid, was coated onto the surface of Si3N4 particles by the precipitation of inorganic salts from a water-based solution containing Al(NO3)3, Y(NO3)3, and urea. The electrokinetic and colloidal characteristics of the Si3N4 powder were changed significantly by the coating layer. As a result, dispersion of the Y2O3–Al2O3-coated Si3N4 powder was significantly greater than that of the original powder. Furthermore, the Y2O3–Al2O3 coating layer prevented the hydrogen-gas-discharging problem that occurred during gelcasting of the original Si3N4 powder because of reaction between the uncoated powder and the basic aqueous solution in suspension. Surface coating, as well as the gelcasting process, significantly improved the microstructure, room-temperature bending strength, and Weibull modulus of the resulting ceramic bodies.  相似文献   

6.
The subsolidus phase relations in the entire system ZrO2-Y2O3 were established using DTA, expansion measurements, and room- and high-temperature X-ray diffraction. Three eutectoid reactions were found in the system: ( a ) tetragonal zirconia solid solution→monoclinic zirconia solid solution+cubic zirconia solid solution at 4.5 mol% Y2O3 and ∼490°C, ( b ) cubic zirconia solid solutiow→δ-phase Y4Zr3O12+hexagonalphase Y6ZrO11 at 45 mol% Y2O3 and ∼1325°±25°C, and ( c ) yttria C -type solid solution→wcubic zirconia solid solution+ hexagonal phase Y6ZrO11 at ∼72 mol% Y2O3 and 1650°±50°C. Two ordered phases were also found in the system, one at 40 mol% Y2O3 with ideal formula Y4Zr3O12, and another, a new hexagonal phase, at 75 mol% Y2O3 with formula Y6ZrO11. They decompose at 1375° and >1750°C into cubic zirconia solid solution and yttria C -type solid solution, respectively. The extent of the cubic zirconia and yttria C -type solid solution fields was also redetermined. By incorporating the known tetragonal-cubic zirconia transition temperature and the liquidus temperatures in the system, a new tentative phase diagram is given for the system ZrO2-Y2O3.  相似文献   

7.
Various Y2O3/ZrO2 samples were fabricated by hot pressing, whereby Y2O3 was mutually dissolved or reacted with ZrO2 as a solid solution or Zr3Y4O12. Hot-pressed samples were allowed to react with Ti melt at 1700°C for 10 min in argon. Microstructural characterization was conducted using X-ray diffraction and analytical electron microscopy. The Y2O3/ZrO2 samples became more stable with increasing Y2O3 because Y2O3 was hardly reacted and dissolved with Ti melt. The incorporation of more than 30 vol% Y2O3 could effectively suppress the reactions in the Ti side, where only a very small amount of α-Ti and β'-Ti was found. When ZrO2 was dissolved into Ti on the zirconia side near the original interfaces, Y2O3 reprecipitated in the samples containing 30%–70 vol% Y2O3, because the solubility of Y2O3 in Ti was very low. In the region far from the original interface, α-Zr, Y2O3, and/or residual Zr3Y4O12 were found in the samples containing more than 50 vol% Y2O3 and the amount of α-Zr decreased with increasing Y2O3.  相似文献   

8.
The knowledge of the microstructural evolution during exposure to high temperatures is important to understanding the mechanisms responsible for the creep resistance of silicon carbide (SiC) ceramics. This includes not only the phase transformation of the SiC grains, but also the phase transformations of the oxynitride grain-boundary phases. For this study, a series of SiC specimens were prepared with varying molar ratios of AlN-Y2O3 additives. Increased creep resistance was observed in specimens with an additive system containing a 2:3 molar ratio or 60 mol% Y2O3. A continuous oxide layer of Y2Si2O7 formed at the surface during elevated temperature testing in air. No blistering or cracking was observed in this oxide coating. Further increase of the creep resistance was achieved by a post-sintering nitrogen anneal.  相似文献   

9.
The effect of Y2O3 addition to the oxidation resistance of sol-gel-derived zirconia films coated on austenitic stainless steel substrates was examined. The oxidation weight gain measurement and XRD analyses of oxides showed that addition of Y2O3 reduces oxide formation. TEM observations revealed that the films are joined to the substrates via an amorphous layer with concentrated Si, and the layer grew thicker by adding Y2O3 or elevating the firing temperature. Lattice constants of the films were shown to be more expanded than the zirconia powders prepared from the coating liquids.  相似文献   

10.
The eutectic composition between Y4Al2O9 and Y2O3 was determined using electron probe microanalysis (EPMA) on directionally solidified specimens with hypo- and hypereutectic compositions. The microstructures of the specimens as a function of composition differ considerably with small deviation from the eutectic composition (70.5 mol% Y2O3 and 29.5 mol% Al2O3). Based on the current results and other published data, the pseudobinary system between Al2O3 and Y2O3 is revised.  相似文献   

11.
The phase diagram for the system ZrO2-Y2O3 was redetermined. The extent of the fluorite-type ZrO2-YzO3 solid solution field was determined with a high-temperature X-ray furnace, precise lattice parameter measurements, and a hydrothermal technique. Long range ordering occurred at 40 mol% Y2O3 and the corresponding ordered phase was Zr3Y4OL12. The compound has rhombohedra1 symmetry (space group R 3), is isostructural with UY6Ol2 and decomposes above 1250±50°C. The results indicate that the eutectoid may occur at a temperature <400°C at a composition between 20 and 30 mol% Y2O3 Determination of the liquidus line indicated a eutectic at 83± 1 mol% Y2O3 and a peritectic at 76 ± 1 mol% Y2O3.  相似文献   

12.
The importance of aluminum nitride (AlN) stems from its application in microelectronics as a substrate material due to high thermal conductivity, high electrical resistance, mechanical strength and hardness, thermal durability, and chemical stability. Yttria (Y2O3) is the best additive for AlN sintering. AlN densifies by a liquid-phase mechanism, where the surface oxide, Al2O3, reacts with Y2O3 to form an Y-Al-O-N liquid that promotes particle rearrangement and densification. Construction of the phase relations in this multicomponent system is essential for optimizing the properties of AlN. The ternary phase diagram of the AlN–Al2O3–Y2O3 was developed by Gibbs energy minimization using interpolation procedures based on modeling the binary subsystems. This paper aims at testing the resultant understanding experimentally at selected compositions using in situ high-temperature neutron diffractometry. These experimental results agree with the thermodynamic calculations of AlN–Al2O3–Y2O3. The ternary phase diagram has been constructed for the first time in this work. High-temperature neutron diffractometry has permitted real time measurement of the reactions involved in this ternary system, especially to determine the temperature range for each reaction, which would have been difficult to establish by other means.  相似文献   

13.
Yttria-stabilized zirconia (YSZ) coatings were produced by reactively cosputtering metallic zirconium and yttrium targets in an argon and oxygen plasma using a system with multiple magnetron sputtering sources. Coating crystal structure and phase stability, as functions of Y2O3 content, substrate bias, and annealing temperature, were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Results demonstrated that highly (111)-oriented tetragonal and cubic zirconia structures were formed in 2 and 4.5 mol% Y2O3 coatings, respectively, when the coatings were grown with an applied substrate bias. Conversely, coatings deposited with no substrate bias had random tetragonal and cubic structures. XRD analysis of annealed coatings showed that the cubic zirconia in 4.5 mol% Y2O3 coatings exhibited structural stability at temperatures up to 1200°C. Transformation of the tetragonal to monoclinic phase occurred in 2 mol% Y2O3 coating during high-temperature annealing, with the fraction of transformation dependent on bias potential and annealing temperature.  相似文献   

14.
A metastable modification of Y2GeO5 is formed from an amorphous material prepared by the simultaneous hydrolysis of yttrium and germanium alkoxides. It has an orthorhombic unit cell with a =0.6068 nm, b =1.0695 nm, and c = 1.1994 nm. The chemical structure is described by the formula Y4(Ge2O6)O4.  相似文献   

15.
Amorphous films in the system Al2O3–Y2O3 were prepared by the rf sputtering method in the range of 0–76 mol% Y2O3, and their density, refractive index, and elastic constants were measured. All of the physical properties of the amorphous Al2O3–Y2O3 films had a similar compositional dependence; that is, they increased continuously, but not linearly with increasing Y2O3 content. To confirm the coordination states of aluminum and yttrium ions in the amorphous Al2O3–Y2O3 films, the Al K α X-ray emission spectra and the X-ray absorption near edge structures (XANES) were measured. The average coordination number of aluminum ions in the amorphous films containing up to about 40 mol% Y2O3 content was 5, that is a mixture of 4-fold- and 6-fold-coordinated states. In the region of more than about 50 mol% Y2O3, the fraction of the 6-fold-coordinated aluminum ions increased with increasing Y2O3 content, while the results led to the conclusion that the coordination number of yttrium ions was always 6, regardless of composition. These results indicate that, in amorphous films in the system Al2O3–Y2O3, the change of the coordination state of aluminum ions has an important effect on physical properties.  相似文献   

16.
The surface roughness and topography of three different Al2O3 fibers were evaluated using atomic force microscopy (AFM). The fibers used were as-received, refractory-metal coated, and Y2O3/refractory-metal duplex-layer coated. The refractory-metal coating and Y2O3 coating on the Al2O3 fibers increased the average surface roughness from 13.3 to 17.1 and 18.8 nm, respectively. The topographic image of the fibers evaluated by AFM was compared to that obtained by scanning electron microscopy. Lateral force microscopy (LFM) was used to measure the distribution of the friction force on the refractory-metal-coated Al2O3 surfaces, with friction coefficients ranging from 0.2 to 0.8; the average friction coefficient was 0.38. Tailoring the mechanical properties at fiber/matrix interfaces by surface modification of Al2O3 fibers to improve the overall mechanical properties of the composites also was proposed.  相似文献   

17.
Heat treatments in several environments were performed on a series of compounds in the Al2O3 and Y2O3 system: Al2O3Y3Al5O12 eutectic, Y3Al5O12, YAlO3, Y4Al2O9, and Y2O3. The yttrium aluminates were found to be stable at high temperatures under vacuum and in air. However, when they were heat-treated under vacuum in proximity to SiC, degradation was observed. This was found to be primarily a result of carbothermal reduction. In a similarly reducing environment without Si, the yttrium aluminates, and Al2O3 and Y2O3, all exhibited degradation by carbothermal reduction. Based upon the experimental results, a degradation mechanism for yttrium aluminates was proposed.  相似文献   

18.
The pseudoternary system ZrO2-Y2O3-Cr2O3 was studied at 1600°C in air by the quenching method. Only one intermediate compound, YCrO3, was observed on the Y2O3−Cr2O3 join. ZrO2 and Y2O3 formed solid solutions with solubility limits of 47 and 38 mol%, respectively. The apex of the compatibility triangle for the cubic ZrO2, Cr2O3, and YCrO3 three-phase region was located at =17 mol% Y2O3 (83 mol% ZrO2). Below 17 mol% Y2O3, ZrO2 solid solution coexisted with Cr2O3. Cr2O3 appears to be slightly soluble in ZrO2(ss).  相似文献   

19.
Pressureless sintering of silicon nitride requires addition of sintering agents. The main part of this study was done in order to homogenize the distribution of sintering agents, in this case Y2O3, in a silicon nitride matrix. Colloidal 10-nm Y2O3 Particles were electrostatically adsorbed on Si3N4 particle surfaces. The adsorption was studied by X-ray fluorescence analysis and electrophoretic measurements. Addition of Y2O3 sol to a Si3N4 suspension decreased the viscosity of the suspension. The slip casting properties of Si3N4 suspensions with added Y2O3 sol were examined, and the homogeneity of Y2O3 in the green compacts was compared with conventionally prepared samples. An improved microstructural homogeneity was obtained when Y2O3 sol particles were adsorbed on the Si3N4 particle surfaces.  相似文献   

20.
The effect of Y2O3 addition (0–5 wt%) on the densification and properties of reactive hot-pressed alumina (Al2O3)–boron nitride composites based on the reaction between aluminum borate (2Al2O3·B2O3) and aluminum nitride (AlN) was investigated. The densification process was very sensitive to the amount of Y2O3. Compared with a low relative density of 79.3 theoretical density (TD)% for material with no Y2O3 addition, the material density reached 98.6 TD% with 0.25% Y2O3 addition. High Y2O3 additions resulted in the formation of a new phase Al5Y3O12. The grain growth of the Al2O3 matrix was promoted by the Y2O3 addition. Owing to the high density and the small Al2O3 particle size the sample with 0.25% Y2O3 addition demonstrated the highest bending strength of 540 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号