共查询到20条相似文献,搜索用时 4 毫秒
1.
An investigation of the CO hydrogenation of Pt- or Re-promoted 8.7 wt% Co/Al2O3 (1.0 wt% Pt or 1.0 wt% Re) has been carried out at two different conditions: 473 K, 5 bar, H2/CO = 2 and 493 K, 1 bar, H2/CO = 7.3. The addition of Pt or Re significantly increases the CO hydrogenation rate (based on weight of Co), but the selectivity was not changed by the presence of Pt or Re. The results show that the observed increases in the reaction rates are caused by increased reducibility and increased number of surface exposed Co-atoms. Steadystate isotopic transient kinetic analysis (SSITKA) with carbon tracing was used to decouple the effects of the concentration of active surface intermediates and the average site reactivity of intermediates during steady-state CO hydrogenation. The SSITKA results show that the concentration of active surface intermediates leading to CH4 increased as a result of the addition of a noble metal promoter. However, the average site activity was not significantly affected upon Re or Pt addition. 相似文献
2.
为降低费托合成钴催化剂成本,提高费托合成钴催化剂的稳定性和寿命,分析了费托合成钴催化剂的失活与再生机理,论述了费托合成钴催化剂的再生方法。结果表明,中毒、烧结长大、积碳、氧化及固相反应是造成费托合成钴催化剂失活的主要原因。通过净化原料气、调节钴与载体相互作用、调整催化剂配方及工艺条件、控制钴颗粒尺寸及体系中水和H2的分压比等措施可以提高催化剂稳定性和寿命。通过脱蜡、氧化、还原可实现催化剂再生,氧化是再生的关键步骤,要注意氧化过程中升温速率、热量移除等问题;多次的氧化和还原过程可增加再生催化剂中金属钴与还原助剂的均匀性,提高再生催化剂的活性。 相似文献
3.
载体和钴物种之间的相互作用对费托钴催化剂分散度和还原度具有重要影响,载体改性可以调节载体与钴物种之间的相互作用。简要介绍了费托合成钴催化剂载体改性技术及其对载体与钴物种相互作用的影响,结果表明:改性载体和钴物种之间相互作用增加时,分散度升高,还原度降低;改性载体和钴物种之间互相作用降低时,则分散度降低,还原度升高;通过多载体掺杂改性、无机助剂改性及载体表面有机改性可有效调节载体和钴物种之间的相互作用,使得催化剂具有适中的还原度和分散度,从而提高催化剂的活性。 相似文献
4.
Kevin P. Anderson Anit K. Giri Richard P. Vinci Helen M. Chan 《Journal of the American Ceramic Society》2019,102(9):5050-5062
Materials in single crystal form are often sought after because the absence of grain boundaries can result in unique properties relative to the polycrystal, but producing these materials is typically a slow and complex process. In this work, pseudo single crystals of the pseudobrookite compound CoTi2O5 were synthesized by solid-state reaction from a duplex grain mixture of CoTiO3 and TiO2. The size of the crystallites was >250 µm. The transformation and subsequent microstructural evolution of the CoTi2O5 was studied by scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), and X-ray diffraction (XRD). A novel growth mechanism was identified whereby a single crystal CoTi2O5 front advances simultaneously along multiple CoTiO3/TiO2 diphasic boundaries. The single crystal domains were composed of subgrains approximately 5 µm in diameter; differences in the subgrain size and misorientation were related to the growth mechanism and the initial grain size of the duplex CoTiO3–TiO2 mixture. CoTi2O5 is a little characterized compound, and this study represents the most significant microstructural study of CoTi2O5 to date. The findings may be applied to similar pseudobrookite compounds such as MgTi2O5 and Al2TiO5. 相似文献
5.
Synthesis and catalytic properties of eggshell cobalt catalysts for the Fischer-Tropsch synthesis 总被引:3,自引:0,他引:3
Enrique Iglesia Stuart L. Soled Joseph E. Baumgartner Sebastian C. Reyes 《Topics in Catalysis》1995,2(1-4):17-27
CO diffusional restrictions decrease C5+ synthesis rates and selectivity within large (1–3 mm) catalyst pellets often required in Fischer-Tropsch (FT) synthesis reactors. Eggshell catalysts, where Co is located preferentially near outer pellet surfaces, reduce the severity of these transport restrictions and lead to higher synthesis rates and C5+ selectivity. Maximum C5+ selectivities occur on catalysts with intermediate shell thickness, within which transport restrictions limit the removal of reactive olefins but not the arrival of reactants at catalytic sites. A new synthetic technique leads to sharp distributions of active sites near outer pellet surfaces by controlling the rate of imbibition of cobalt nitrate melts. Also, slow reduction of the impregnated salt leads to moderate Co dispersions (0.05–0.10) even at high local Co loadings present within shell regions. 相似文献
6.
The effect of small amounts of Re on the reduction properties of -alumina supported cobalt catalysts has been studied by temperature-programmed reduction (TPR). An intimate mixture of Co/Al2O3 and Re/Al2O3 catalysts showed a promoting effect of Re similar to that for coimpregnated Co-Re/Al2O3. A loose mixture of Co/Al2O3 + Re/Al2O3 did not show any effect of Re on the reduction of cobalt. However, when the loose mixture of Co/Al2O3 + Re/Al2O3 was pretreated with Ar saturated with water before the TPR, a promoting effect of Re on the reduction of Co was observed. It is suggested that Re promotes the reduction of cobalt oxide by hydrogen spillover, and that no direct contact between Re and Co seems to be necessary in order to obtain the promoting effect as observed by TPR. It is also shown that the presence of a high temperature TPR peak at 1200 K assigned to cobalt aluminate is mainly a result of Co-ion diffusion during the TPR and not during calcination. 相似文献
7.
D. Schanke A. M. Hilmen E. Bergene K. Kinnari E. Rytter E. Ådnanes A. Holmen 《Catalysis Letters》1995,34(3-4):269-284
The influence of water on alumina-supported cobalt catalysts has been studied. The deactivation of supported Co catalysts was studied in a fixed-bed reactor using synthesis gas feeds containing different concentrations of water vapour. Supporting model studies were carried out using H2O/H2 feeds in conjunction with XPS and gravimetry. Rapid deactivation occurs on Re-promoted CO/Al2O3 catalysts when H2/CO/H2O feeds are used, whereas unpromoted CO/Al2O3 shows more stable activity. The results from the gravimetric studies suggest that only a small fraction of the bulk cobalt metal initially present reoxidizes to cobalt oxide during reaction. However, the XPS results indicate significant reoxidation of surface cobalt atoms or highly dispersed cobalt phases, which is likely to be the cause of the observed deactivation. Rhenium is shown to have a marked effect on the extent of reoxidation of alumina-supported cobalt catalysts. 相似文献
8.
Study on a cobalt silica catalyst during reduction and Fischer-Tropsch reaction: In situ EXAFS compared to XPS and XRD 总被引:1,自引:0,他引:1
The reduction of a 25 wt% Co/SiO2 catalyst for the hydrocarbon synthesis has been followed by several techniques: XRD, TPR, XPS and in situ EXAFS. Before reduction the cobalt is present as a Co3O4 spinel phase. A two-step reduction of Co3O4 to CoO and then to Co° is observed by EXAFS. This is consistent with XPS (surface) and TPR or XRD (bulk) studies. During CO/H2 reaction, cobalt is always in the metallic state (EXAFS). The coordination number of cobalt has been determined at each reduction step and during CO hydrogenation reaction. 相似文献
9.
制备不同的Co/MnOx (Co/MnO、Co/MnO2、Co/Mn2O3、Co/Mn3O4) 催化剂,并利用XRD、SEM、TEM、BET、TPR、DRIFTS、XPS表征手段分析催化剂的理化性质,比较不同氧化锰载体对催化性能的影响,考察催化剂对低碳烯烃(C2=~C4=)的选择性影响。结果表明催化剂Co/MnO和Co/Mn3O4更容易还原,并且CO的吸附量较大,有利于实现较高的CO转化率;Co/Mn2O3和Co/Mn3O4中CO桥式吸附更高,有利于生成更多的-CH2-物种。综合考虑催化剂的活性和C2=~C4=选择性,Co/Mn3O4的费托合成(FTS)性能最好,其中C2=~C4=选择性为50.91%,烯烷比(O/P)为3.40。 相似文献
10.
Hasan Oliaei Torshizi Ali Nakhaei Pour Ali Mohammadi Yahya Zamani Seyed Mehdi Kamali Shahri 《Frontiers of Chemical Science and Engineering》2021,15(2):299-309
In this paper,a series of cobalt catalysts supported on reduced graphene oxide(rGO)nanosheets with the loading of 5,15 and 30 wt-%were provided by the impregnation method.The activity of the prepared catalysts is evaluated in the Fischer-Tropsch synthesis(FTS).The prepared catalysts were carefully characterized by nitrogen adsorption-desorption,hydrogen chemisorption,X-ray diffraction,Fourier transform infrared spectroscopy,Raman spectroscopy,temperature programmed reduction,transmission electron microscopy,and field emission scanning electron microscopy techniques to confirm that cobalt particles were greatly dispersed on the rGO nanosheets.The results showed that with increasing the cobalt loading on the rGO support,the carbon defects are increased and as a consequence,the reduction of cobalt is decreased.The FTS activity results showed that the cobalt-time yield and turnover frequency passed from a maximum for catalyst with the Co0 average particle size of 15 nm due to the synergetic effect of cobalt reducibility and particle size.The products selectivity results indicated that the methane selectivity decreases,whereas the C5+selectivity raises with the increasing of the cobalt particle size,which can be explained by chain propagation in the primary chain growth reactions. 相似文献
11.
12.
A Co/SiO2 catalyst recovered after both gas and liquid phase Fischer-Tropsch synthesis exhibited significant decreases in the amount of reducible metal. Hydrothermal conditions similar to those occurring during Fischer-Tropsch synthesis were simulated in order to study compound formation in this Co/SiO2 catalyst. Hydrothermal treatment at 220°C led to a catalyst with lower reducibility, attributable to the formation of both reducible and nonreducible (<900°C) Co silicates. The formation of these compounds occurred only when metallic Co was present, was more pronounced in the presence of hydrogen, and was inhibited by air. 相似文献
13.
Fischer-Tropsch synthesis (FTS) was carried out in a fixed bed reactor with a highly effective cobalt catalyst for wax production. The procedure for reducing the inactive cobalt oxide to the active cobalt catalyst was examined by X-ray diffraction (XRD) and temperature-programmed reduction (TPR). The results showed that 300 ml/min H2 at 350 °C for 16 h was suitable for reducing the inactive Co oxides to active metallic Co sites. In the case of the powder and pellet type cobalt catalysts with a reactant (H2/CO = 2:1) flow rate of 15 gcat min L−1, catalyst deactivation occurred as a result of mass transfer limitations of the hydrocarbon and water produced on the catalyst. On the other hand, the pellet type cobalt catalyst with a reactant flow rate of 45 gcat min L−1 showed activity not only for liquid hydrocarbon (C5+) formation but also for gas product (CH4 and CO2) formation. In particular, the methane yield reached almost 20% due to heat transfer limitation in the catalyst. Considering the heat and mass transfer limitations in the cobalt catalyst, a Co-foam catalyst with an inner metallic foam frame and an outer cobalt catalyst was developed. SEM-EDS Co-mapping revealed the cobalt atoms to be distributed equally over the surface of the Co-foam catalyst. The Co-foam catalyst was highly selective toward liquid hydrocarbon production and the liquid hydrocarbon productivity at 203 °C was 52.5 ml h−1, which was higher than that by the Co-pellet. In addition, the chain length probability, α, by the Co-foam catalyst was 0.923 and wax formation was especially favored. 相似文献
14.
费托合成是以合成气生产清洁燃料和其他化学品的重要途径。传统费托合成产物遵循A-S-F分布,只有甲烷和重质烃的选择性没有极限值。因此,费托合成研究以最大程度地合成重质烃,提高合成产物中重质烃的选择性为目标。基于此,首先详细探究了Al2O3、SiO2和SiC载体对费托反应性能的影响。结果表明 Co/SiC催化剂具有最高的CO转化率(83.5%)和C5+选择性(80.3%)。与浸渍法相比,原位还原法更为有效地引入Ru到Co/SiC催化剂,将C5+选择性提高至90.1%。Ru助剂能在保持较高催化活性不变的前提下,有效提高Co/SiC催化剂C5+选择性。催化剂表征(XRD、H2-TPR、XPS、H2-化学吸附和TEM)结果表明,Ru能与Co发生相互作用,提高了催化剂的可还原性和活性组分的分散性,进而改善了Co/SiC催化剂重质烃的选择性。 相似文献
15.
Step-change experiments between H2, CO, and syngas mixtures with time resolution of ca. 0.3 s were undertaken to critically test mechanisms proposed in the literature for the Fischer-Tropsch synthesis. A silica-supported cobalt catalyst was used. Results suggest C2+ olefins and branched paraffins form from a carbon deposit on the catalyst surface. Two pathways appear to exist for methane formation. The first of these is from the carbon deposit through direct hydrogenation and through hydrogenolysis of the long-chain materials formed. The second pathway is hydrogenation of strongly adsorbed CO. 相似文献
16.
Preparation and properties of supported cobalt catalysts for Fischer-Tropsch synthesis 总被引:1,自引:0,他引:1
J. van de Loosdrecht M. van der Haar A.M. van der Kraan A.J. van Dillen J.W. Geus 《Applied Catalysis A: General》1997,150(2):684-376
Alumina-supported cobalt catalysts have been prepared from different cobalt precursors to study the influence of the precursor on the ultimate metal particle size. Furthermore, the effect of the particle size on the catalytic performance (activity and selectivity) during Fischer-Tropsch synthesis has been investigated. The preparation of low-loaded cobalt catalysts (2.5 wt%) by incipient wetness impregnation using cobalt EDTA and ammonium cobalt citrate precursors resulted initially in very small cobalt oxide particles, as determined by XPS. The small oxide particles reacted during the thermal treatment in a reducing gas flow with the alumina support to cobalt aluminate, which was neither active nor selective during Fischer-Tropsch synthesis. The catalysts prepared with cobalt nitrate had larger particles that could be easily reduced to metallic cobalt. These catalysts were active under reaction conditions. High-loaded cobalt catalysts (5.0 wt%) prepared using ammonium cobalt citrate showed a larger particle size than the low-loaded catalyst prepared from the citrate precursor. The extent of reduction to metallic cobalt that could be achieved with the high-loaded catalyst was significantly higher than that with the low-loaded catalyst, as shown by magnetic measurements. Accordingly, the high-loaded catalyst exhibited a reasonable activity and, in addition, an interesting and remarkably high selectivity toward higher hydrocarbons, and also a very high Schultz-Flory parameter. 相似文献
17.
Different cycling strategies are explored to see if carbon chain growth can be enhanced and methane formation suppressed. Of the strategies considered, bang-bang cycling between H2 and CO feeds substantially increased the consumption of CO and H2, but the formation of higher hydrocarbons and olefins was reduced. The best strategy for longer chain hydrocarbons suitable for jet or diesel fuels was found to be cycling between syngas mixtures. None of the cycling strategies was able to produce C8+ or low-molar mass olefin yields that matched yields found in steady-state operation. 相似文献
18.
Thongthai WitoonMetta Chareonpanich Jumras Limtrakul 《Fuel Processing Technology》2011,92(8):1498-1505
Hierarchical meso-macroporous (HS-X) silica with different mesopore diameters synthesized by using rice husk ash as a silica source and chitosan as a natural template were applied for the first time as the cobalt support for Fischer-Tropsch synthesis. Unimodal mesoporous silica (MS-X) supports with equivalent mesopore diameters to HS-X supports have also been prepared for comparison. Effects of diffusion in MS-X and HS-X supports of different particle sizes on the catalytic activity and hydrocarbon selectivity were investigated. The cobalt crystallite sizes were increased with increasing mesopore diameters, whereas the highest amount of H2 chemisorbed was found for the catalyst with the medium mesopore diameter. The HS-X supports revealed lower surface area and higher macroporosity which led to the formation of larger cobalt crystallite size and less chemisorbed H2. However, the catalytic activity was much higher for cobalt supported on HS-X silica of both small and large catalyst particle sizes. Moreover, with the large catalyst particle size, the C5+ selectivity of cobalt supported on HS-X silica was much higher than that on MS-X silica, indicating the influence of mass transfer of reactants and products in macropores of HS-X supports. 相似文献
19.
采用COMSOL-Multiphysics软件, 针对Fe基催化剂费托合成反应动力学特性, 建立了耦合流动、传热、传质、化学反应多物理场的二维数值计算单元模型, 研究微通道内的费托合成反应。重点研究了催化剂涂层厚度、冷却介质流速对微通道内传热传质、费托反应产物分布的影响规律。模拟结果表明:沿反应通道轴向方向, 催化剂涂层温度呈先升高后降低的趋势;随着催化剂涂层厚度的增加, 温度峰值出现的位置逐渐远离出口, CO转化率提高, CH4的选择性增大, 而C5+的选择性逐渐减小;提高冷却介质流速有利于实现较好的温度控制, 显著降低CH4的选择性, 提高C5+选择性;对于截面尺寸为0.6×0.6mm2、长度为200mm的微通道结构, 较佳的催化剂涂层厚度为0.1mm, 随着冷却侧冷却能力的增强, 较佳的催化剂涂层厚度变大。 相似文献
20.
The CO hydrogenation on single-crystal ruthenium catalysts has been studied utilizing an elevated-pressure micro-reactor and high resolution electron energy loss spectroscopy (HREELS). It is found that carbonaceous deposits identified following CO hydrogenation are essentially identical to those observed in the study of methane decomposition. Three distinct forms of carbonaceous intermediates are identified; these are methylidyne (CH), vinylidene (CCH2), and graphitic carbonaceous species. 相似文献