首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Qi  Tong  Xuejun  Huitao  Li  Rui  Yi 《Sensors and actuators. B, Chemical》2008,134(1):36-42
Pure and Sm2O3-doped SnO2 are prepared through a sol–gel method and characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The sensor based on 6 wt% Sm2O3-doped SnO2 displays superior response at an operating temperature of 180 °C, and the response magnitude to 1000 ppm C2H2 can reach 63.8, which is 16.8 times larger than that of pure SnO2. This sensor also shows high sensitivity under various humidity conditions. These results make our product be a good candidate in fabricating C2H2 sensors.  相似文献   

2.
The influences of La2O3 loading on the ethanol sensing properties of SnO2 nanorods were investigated. An obvious enhancement of response was obtained. The response of 5 wt% La2O3 loaded SnO2 nanorods was up to 213 for 100 ppm ethanol at low working temperature of 200 °C, while that of pure SnO2 nanorods is 45.1. The improvement in response might be attributed to the presence of basic sites, which facilitated the dehydrogenation process. While the working temperature was increased to 300 °C, the sensor response decreased to 16 for 100 ppm ethanol. Additionally, the La2O3 loaded SnO2 nanorods sensors showed good selectivity to ethanol over methane and hydrogen. Our results demonstrated that the La2O3 loaded SnO2 nanorods were promising in fabricating high performance ethanol sensors which could work at low temperature.  相似文献   

3.
We report a novel route for the fabrication of highly sensitive and rapidly responding Nb2O5-based thin film gas sensors. TiO2 doping of Nb2O5 films is carried out by co-sputtering without the formation of secondary phases and the surface area of TiO2-doped Nb2O5 films is increased via the use of colloidal templates composed of sacrificial polystyrene beads. The gas sensitivity of Nb2O5 films is enhanced through both the TiO2 doping and the surface embossing. An additional enhancement on the gas sensitivity is obtained by the optimization of the bias voltage applied between interdigitated electrodes beneath Nb2O5-based film. More excitingly, such a voltage optimization leads to a substantial decrease in response time. Upon exposure to 50 ppm CO at 350 °C, a gas sensor based on TiO2-doped Nb2O5 film with embossed surface morphology exhibits a very high sensitivity of 475% change in resistance and a rapid response time of 8 s under 3 V, whereas a sensor based on plain Nb2O5 film shows a 70% resistance change and a response time of 65 s under 1 V. Thermal stability tests of our Nb2O5-based sensor reveal excellent reliability which is of particular importance for application as resistive sensors for a variety gases.  相似文献   

4.
This paper presents the ability of electrostatic sprayed tin oxide (SnO2) and tin oxide doped with copper oxide (1, 2, and 4 at.% Cu) films to detect different pollutant gases, i.e., H2S, SO2, and NO2. The influence of a copper oxide dopant on the SnO2 morphology is studied using scanning electron microscopy (SEM) technique, which reveals a small decrease in the porosity and particle size when the amount of dopant is increased. The sensing properties of the SnO2 films are greatly improved by doping, i.e., the Cu-doped SnO2 films have large response to low concentration (10 ppm) of H2S at low operating temperature (100 °C). Furthermore, no cross-sensitivity to 1 ppm NO2 and 20 ppm SO2 is observed. Among the studied films, the 1 at.% Cu-doped SnO2 layer is the most sensitive in the detection of all the studied gases.  相似文献   

5.
Detection of sulfur dioxide (SO2) at high temperature (600–750 °C) in the presence of some interferents found in combustion exhausts (NO2, NO, CO2, CO, and hydrocarbon (C3H6)) is described. The detection scheme involves use of a catalytic filter in front of a non-Nernstian (mixed-potential) sensing element. The catalytic filter was a Ni:Cr powder bed operating at 850 °C, and the sensing elements were pairs of platinum (Pt) and oxide (Ba-promoted copper chromite ((Ba,Cu)xCryOz) or Sr-modified lanthanum ferrite (LSF)) electrodes on yttria-stabilized zirconia. The Ni:Cr powder bed was capable of reducing the sensing element response to NO2, NO, CO, and C3H6, but the presence of NO2 or NO (“NOx”, at 100 ppm by volume) still interfered with the SO2 response of the Pt–(Ba,Cu)xCryOz sensing element at 600 °C, causing approximately a 7 mV (20%) reduction in the response to 120 ppm SO2 and a response equivalent to about 20 ppm SO2 in the absence of SO2. The Pt–LSF sensing element, operated at 750 °C, did not suffer from this NOx interference but at the cost of a reduced SO2 response magnitude (120 ppm SO2 yielded 10 mV, in contrast to 30 mV for the Pt-(Ba,Cu)xCryOz sensing element). The powder bed and Pt–LSF sensing element were operated continuously over approximately 350 h, and the response to SO2 drifted downward by about 7%, with most of this change occurring during the initial 100 h of operation.  相似文献   

6.
Fenghua  Heqing  Xiaoli  Li  Lihui  Jie  Hua  Bin 《Sensors and actuators. B, Chemical》2009,141(2):381-389
Hollow sea urchin-like α-Fe2O3 nanostructures were successfully synthesized by a hydrothermal approach using FeCl3 and Na2SO4 as raw materials, and subsequent annealing in air at 600 °C for 2 h. The hollow sea urchin-like α-Fe2O3 nanostructures with the diameters of 2–4.5 μm consist of well-aligned α-Fe2O3 nanorods with an average length of about 1 μm growing radially from the centers of the nanostructures, have a hollow interior with a diameter of about 2 μm. α-Fe2O3 nanocubes with a diameter of 700–900 nm were directly obtained by a hydrothermal reaction of FeCl3 at 140 °C for 12 h. The response Sr (Sr = Ra/Rg) of the hollow sea urchin-like α-Fe2O3 nanostructures reached 2.4, 7.5, 5.9, 14.0 and 7.5 to 56 ppm ammonia, 32 ppm formaldehyde, 18 ppm triethylamine, 34 ppm acetone, and 42 ppm ethanol, respectively, which was excess twice that of the α-Fe2O3 nanocubes and the nanoparticle aggregations. Our results demonstrated that the hollow sea urchin-like α-Fe2O3 nanostructures were very promising for gas sensors for the detection of flammable and/or toxic gases with good-sensing characteristics.  相似文献   

7.
In this study, the nitrogen dioxide (NO2) and ozone (O3) sensing properties of a series bis[tetrakis(alkylthio) phthalocyaninato] lutetium(III) complexes [(CnH2n+1S)4Pc]2Lu(III) (n = 6, 10, 16) are investigated as a function of concentration in the temperature range between 25 °C and 150 °C. The concentration ranges were 1–10 ppm for NO2, and 50 ppb–1 ppm for O3. The response time and the sensor response to NO2 are measured for approximately 1 min and 100% ppm−1, respectively, for compound 1 at room temperature. At room temperature, all compounds are in the solid phase. The response time decreases to a few seconds with increasing operation temperature to 150 °C. At this temperature, all compounds are in the liquid crystal phase. The fastest response to oxidizing gases is observed at the liquid crystal phase of the Pcs. It has also been observed that the response time and the sensor response depend on the alkyl chain lengths of the Pcs. The doping effect of oxygen has been determined under high purity nitrogen N2 flow, after exposure to dry air, at a different period of time and after annealing. It has been found that the conductivities of [(CnH2n+1S)4Pc]2Lu(III) thin films increased after exposure to dry air and the conduction mechanism also changed from ohmic behavior to space-charge-limited conduction.  相似文献   

8.
The NO2 gas sensing characteristics of semiconductor type gas sensors with channels composed of necked ZnO nanoparticles (NPs) were investigated in this study. The heat treatment of the NPs at 400 °C led to their necking and coarsening. The response of the necked-NP-based sensors was as high as 100 when exposed to 0.2 ppm of NO2 at 200 °C. As the concentration of NO2 increased to 5 ppm, their response was enhanced to approximately 400. During the repeated injection of NO2 gas with a concentration of 0.4 ppm, the sensors exhibited stable response characteristics. Furthermore, the 90% response and recovery times of the gas sensor were as fast as 13 and 10 s, respectively. These observations indicate that the non-agglomerated necking of the NPs induced by the heat treatment significantly enhances the gas sensing characteristics of the NP-based gas sensors.  相似文献   

9.
The CuO-functionalized SnO2 nanowire (NW) sensors were fabricated by depositing a slurry containing SnO2 NWs on a polydimethylsiloxane (PDMS)-guided substrate and subsequently dropping Cu nitrate aqueous solution. The CuO coating increased the gas responses to 20 ppm H2S up to 74-fold. The Ra/Rg value of the CuO-doped SnO2 NWs to 20 ppm H2S was as high as 809 at 300 °C, while the cross-gas responses to 5 ppm NO2, 100 ppm CO, 200 ppm C2H5OH, and 100 ppm C3H8 were negligibly low (1.5–4.0). Moreover, the 90% response times to H2S were as short as 1–2 s at 300–400 °C. The selective detection of H2S and enhancement of the gas response were attributed to the uniform distribution of the sensitizer (CuO) on the surface of the less agglomerated network of the SnO2 NWs.  相似文献   

10.
The SnO2 nanowires (NWs) network gas sensors were fabricated on a micro-electrode and heater suspended in a cavity. The sensors showed selective detection to C2H5OH at a heater power during sensor operation as low as 30-40 mW. The gas response and response speed of the SnO2 NWs sensor to 100 ppm C2H5OH were 4.6- and 4.7-fold greater, respectively, than those of the SnO2 nanoparticles (NPs) sensor with the same electrode geometry. The reasons for these enhanced gas sensing characteristics are discussed in relation to the sensing materials and sensor structures.  相似文献   

11.
Appreciable changes in resistance of polycrystalline nanosized CuNb2O6 upon exposure to reducing gases like hydrogen, liquefied petroleum gas (LPG) and ammonia in ambient atmosphere recognize the material as a gas sensor. Nanosized CuNb2O6 synthesized by thermal decomposition of an aqueous precursor solution containing copper nitrate, niobium tartrate and tri-ethanol amine (TEA), followed by calcination at 700 °C for 2 h, has been characterized using X-ray diffraction (XRD) study, transmission electron microscopy (TEM), field-emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX) analysis and Brunauer–Emmett–Teller (BET) surface area measurement. The synthesized CuNb2O6 exhibits monoclinic structure with crystallite size of 25 nm, average particle size of 25–40 nm and specific surface area of 55 m2 g−1.  相似文献   

12.
Crystalline CeO2/TiO2 core/shell nanorods were fabricated by a hydrothermal method and a subsequent annealing process under the hydrogen and air atmosphere. The thickness of the outer shell composed of crystal TiO2 nanoparticles can be tuned in the range of 5-11 nm. The crystal core/shell nanorods exhibited enhanced gas-sensing properties to ethanol vapor in terms of sensor response and selectivity. The calculated sensor response based on the change of the heterojunction barrier formed at the interface between CeO2 and TiO2 is agreed with the experimental results, and thus the change of the heterojunction barrier at different gas atmosphere can be used to explain the enhanced ethanol sensing properties.  相似文献   

13.
A thermally oxidized TiO2 or Nb2O5 film equipped with a top Pd film electrode and a bottom Ti or Nb plate electrode (Pd/MO(n)/M, MO: oxide film, M: metal plate, n: annealing temperature (°C)) has been investigated as a diode-type H2 sensor under air or N2 atmosphere. Pd/TiO2(n)/Ti sensors showed relatively poor H2 sensing properties in air, in comparison with Pd/anodic-TiO2(n)/Ti sensors constructed with an anodized TiO2 film equipped with a top Pd film electrode and a bottom Ti plate electrode, which were reported in our previous studies. On the other hand, Pd/Nb2O5(n)/Nb sensors showed relatively larger H2 response with fast response and recovery speeds than Pd/TiO2(n)/Ti sensors in air under high forward bias conditions. A Pd/Nb2O5(450)/Ti sensor, which was fabricated by radio-frequency magnetron sputtering of Nb metal on a Ti substrate followed by thermal oxidation at 450 °C, showed the largest H2 response and relatively fast response and recovery speeds in air, among the sensors tested. In addition, H2 response of the Pd/Nb2O5(450)/Ti sensor in air was much lower than that in N2, but the logarithm of H2 response was almost proportional to the logarithm of H2 concentration in a wide range of H2 concentration (10–8000 ppm) in air, and the H2 sensitivity in air was much higher than that in N2.  相似文献   

14.
A new gas sensor using TiO2 nanotube arrays was fabricated and explored for formaldehyde detection at room temperature. Highly ordered vertically grown TiO2 nanotube arrays were synthesized by using the conventional electrochemical anodization process. The sensor using the fabricated nanotube arrays as the sensing elements demonstrated a good response to different concentrations of formaldehyde from 10 to 50 ppm and a very good selectivity over other reducing gas species such as ethanol and ammonia at room temperature. While the exact sensing mechanism is unclear, some possibilities are briefly discussed.  相似文献   

15.
A new sensitive pH sensor based on immobilization of the crown heteropolyanion K28Li5H7P8W48O184·92H2O (P8W48) on a electrode surface through a layer by layer assembly process is described. The immobilization is based on the electrostatic adsorption of the complex in layers of charged polyelectrolyte poly(allylamine hydrochloride) (PAH). The deposited P8W48/LBL film was investigated by cyclic voltammetry, potentiometry and electrochemical impedance spectroscopy. Compared to the electrochemical behavior of dissolved P8W48, a slight shift in the redox peak towards negative potentials is observed, which have been attributed to a slight decrease in the acidity of the interior of the P8W48/LBL film compared to the testing buffer solution. The relationship between the peak currents of the deposited P8W48/LBL film and the number of layers is shown to be linear, which demonstrates that equal amounts of P8W48 are adsorbed in each deposition layer. The P8W48/LBL modified electrode showed high sensitivities toward pH. Therefore, such electrodes were tested as pH sensors using the titration method. The resulting pH sensor has a detection range of pH 1–13, a sensitivity of 69 ± 2 mV/pH, high repeatability (<3 mV), fast response time (<7 s), low sensitivity toward change in ionic strength and nature of the supporting electrolyte, low internal resistance and a working life time of at least 3 months. Moreover, the sensor is easy to manufacture and can be easily miniaturized for measurements in micro- and nano-systems.  相似文献   

16.
It is shown that the doping of Zn and Sn can improve the gas sensitivity of α-Fe2O3-based sensing material to CO. X-ray photo-electron spectroscopy analysis suggests that this is mainly due to the fact that the simultaneous doping of Zn and Sn can increase the S and hence SO42− contents in the α-Fe2O3(SO42−, Sn, Zn) sensing material. The results also suggest that under a given condition, the gas sensitivity of α-Fe2O3(SO42−, Sn, Zn) to CO can be optimised by properly adjusting the doped Zn content.  相似文献   

17.
This paper focuses on the gas sensing properties of the mixed-potential-type NO2 sensor based on yttria stabilized zirconia (YSZ) and NiO electrode. The sensing performance of the sensor was improved by modifying the three-phase boundary (TPB). Hydrofluoric acid with different concentrations (10%, 20% and 40%) was used to corrode YSZ substrate to obtain large superficial area of TPB. The scanning electron microscope and atomic force microscopic images showed that the 40% HF could form the largest superficial area at the same corroding time (3 h). The sensitivity of the sensor using the YSZ plate corroded with 40% hydrofluoric acid to 20-500 ppm NO2 was 76 mV/decade at 850 °C, which was the largest among the examined HF concentrations. It was also seen that the sensor showed a good selectivity and speedy response kinetics to NO2. On the basis of the measurements of anodic and cathodic polarization curves, as well as the complex impedance of the device, the sensing mechanism was confirmed to involve a mixed potential at the oxide sensing electrode.  相似文献   

18.
ZnO–SnO2 nanofibers have been developed through in situ electrospinning technique and calcination. Poly(vinyl pyrrolidone) (PVP) is selected as fiber template. The composition of products can be controlled concisely by adjusting the compositions in their precursors. Under the optimized experimental conditions, the prepared product shows the desirable sensing characteristics towards ethanol gas at 300 °C, such as high response, excellent linearity in the range of 1–300 ppm, quick response time (5 s) and recovery time (6 s), good reproducibility, stability and selectivity.  相似文献   

19.
New gas sensitive MIS structures Pt/Al2O3(M)/p-Si, where M = Pt, Rh, with granular dielectric Al2O3 layers doped with noble metals were obtained by an aerosol pyrolysis method. Surface morphology and composition of the structures were studied by TEM, AFM and EPMA. Sensor properties of the MIS structures were studied towards reducing gases (1000 ppm H2, 300 ppm CO, 1000 ppm CH4 in air) at 100 and 200 °C. The Pt/Al2O3(M = Pt, Rh)/Si structures showed a very high sensor response to reducing gases. A shift of CV characteristics was up to 2.5 V under CO, 2.2 V under hydrogen and 0.7 V under methane. High values of shift of CV curves can be related with cooperative influence of a change of surface state density in dielectric layer, reduction of platinum electrode and dipole layer formation.  相似文献   

20.
Au-doped WO3-based sensor for NO2 detection at low operating temperature   总被引:1,自引:1,他引:0  
Pure and Au-doped WO3 powders for NO2 gas detection were prepared by a colloidal chemical method, and characterized via X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The NO2 sensing properties of the sensors based on pure and Au-doped WO3 powders were investigated by HW-30A gas sensing measurement. The results showed that the gas sensing properties of the doped WO3 sensors were superior to those of the undoped one. Especially, the 1.0 wt% Au-doped WO3 sensor possessed larger response, better selectivity, faster response/recovery and better longer term stability to NO2 than the others at relatively low operating temperature (150 °C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号