共查询到18条相似文献,搜索用时 59 毫秒
1.
针对传统稀疏表示不能有效区分目标和背景的缺点,提出一种判别稀疏表示算法,这种算法在传统稀疏表示目标函数中加入一个判别函数,大大降低干扰因素对目标跟踪的影响。基于判别稀疏表示和[?1]约束,提出一种在线字典学习算法升级目标模板,有效降低背景信息对目标模板的影响。提取目标梯度方向的直方图(HOG)特征,利用其对光照和形变等复杂环境具有较强鲁棒性的优点,实现对目标更稳定的跟踪。实验结果表明,与现有跟踪方法相比,该算法的跟踪效果更好。 相似文献
2.
《计算机科学与探索》2016,(7):1035-1043
为提高目标跟踪算法在复杂条件下的鲁棒性和准确性,研究了一种基于贝叶斯分类的结构稀疏表示目标跟踪算法。首先通过首帧图像获得含有目标与背景模板的稀疏字典和正负样本;然后采用结构稀疏表示的思想对样本进行线性重构,获得其稀疏系数;进而设计一款贝叶斯分类器,分类器通过正负样本的稀疏系数进行训练,并对每个候选目标进行分类,获得其相似度信息;最后采用稀疏表示与增量学习结合的方法对稀疏字典进行更新。将该算法与其他4种先进算法在6组测试视频中进行比较,实验证明了该算法具有更好的性能。 相似文献
3.
《计算机辅助设计与图形学学报》2014,(8)
为提高视频目标跟踪算法的鲁棒性,提出一种基于在线更新稀疏模板的自适应参数特征判别跟踪算法.该算法采用离线方式训练出基于方向梯度直方图特征的字典,用于目标表示和线性分类器训练,从而构建出非固定参数的观测模型;观测模型中动态调整的权重系数由采用正负模板构建形成的稀疏字典进行实时动态更新;将观测模型与粒子滤波相结合对当前帧的各候选采样进行观测,得出跟踪结果.实验结果表明,文中算法具有相对较好的鲁棒性. 相似文献
4.
针对图像序列中的运动目标在跟踪过程中易受到光照等复杂环境、外观变化及部分遮挡影响的问题,提出基于全局信息和局部信息的混合粒子滤波算法.将目标的局部二元模式纹理特征引入粒子滤波算法,通过稀疏编码目标子块,充分利用目标的局部空间信息,并结合全局信息以确定当前帧中目标的位置.在跟踪过程中实时更新模板,这在一定程度上提高算法的鲁棒性.实验表明在目标处于复杂环境中算法能达到较理想的跟踪效果. 相似文献
5.
6.
针对稀疏表示用于目标跟踪时存在重构误差表示不够精确、目标模板更新错误等问题,提出一种改进的稀疏编码模型。该模型无需重构误差满足特定的先验概率分布,且加入对编码系数的自适应约束,可以取得更优的编码向量,使得跟踪结果更为准确。在此基础上,将这种改进的编码模型与粒子滤波目标跟踪算法相结合,研究并实现一种新的基于鲁棒稀疏编码模型的目标跟踪方法。该方法对每个粒子的采样区域进行编码,用所得的稀疏编码向量作为当前粒子的观测量,并采用目标模板分级更新策略,使得目标模板更加准确。实验结果表明,方法可以较好地解决目标部分遮挡和光照变化等干扰下的目标跟踪问题。 相似文献
7.
8.
9.
目的 当前大多数基于稀疏表示的跟踪方法只考虑全局特征或局部特征的最小重构误差,没有充分利用稀疏编码系数,或者忽略了字典判别性的作用,尤其当目标被相似物遮挡时,往往会导致跟踪目标丢失。针对上述问题,提出一种新的基于判别式字典和加权局部特征的稀疏外观模型(SPAM-DDWF)跟踪算法。方法 首先利用Fisher准则学习判别式字典,对提取的局部特征进行结构性分析来区分目标和背景,其次,提出一种新的基于加权的相似性度量方法来处理遮挡问题,从而提高跟踪的精确度。此外,基于重构系数的权重更新策略,使算法能更好地适应跟踪目标的外观变化,并降低了遮挡发生时跟踪漂移的概率。结果 在多个基准图像序列上,与多种流行方法对比,本文算法在光照变化、复杂背景、遮挡等场景中保持较高的跟踪成功率与较低的漂移误差。平均成功率和漂移误差分别为76.8%和3.7。结论 实验结果表明,本文算法具有较好的有效性和鲁棒性,尤其在目标被相似物遮挡的情况下,也能较准确地跟踪到目标。 相似文献
10.
针对当前基于稀疏分类的目标跟踪算法跟踪精度较低等问题,结合判别分析思想,提出改进型稀疏跟踪算法。采用基于在线学习的标准对冲算法估算目标的位置以及面积,并详细介绍了标准对冲算法原理。对于在跟踪过程中目标外形改变的问题,提出了基于时序循环的模板更新方法。对目标暂时消失或被完全遮挡时会产生跟踪失败的问题,创造性地提出了基于稀疏分类器网格SCG的合作跟踪框架。进行了两类实验,第一类实验验证了该算法的有效性。第二类实验在大量公共图像序列的基础上对该算法及其他图像跟踪算法进行测试比较。实验结果证明,该算法适用于复杂背景下的跟踪任务,在跟踪失败后能自动恢复跟踪,在目标被部分遮挡、长期遮挡或目标与背景有相似特征模式的情况下都能保持较高的跟踪精度。 相似文献
11.
为提高跟踪算法对光照或背景的大幅度变化和车辆大范围运动的鲁棒性,提出了一种基于空间直方图的多特征目标跟踪算法。算法以自适应权值多特征乘性融合框架为基础,分别建立目标的颜色、边缘和纹理空间直方图,使用Mean Shift迭代,利用各特征空间概率分布图中目标与背景的BH系数,调整特征权值。该算法使跟踪不再过分依赖某一单一特征,实现了复杂背景下目标的准确跟踪。 相似文献
12.
传统的基于颜色直方图的粒子滤波跟踪算法不能很好地利用跟踪对象的空间结构信息,因此在邻域颜色相似或目标模型微小变化时,不能取得良好的跟踪效果。提出一种融合目标特征和目标空间位置信息的粒子滤波跟踪算法,该算法鉴于目标空间位置包含跟踪对象一定的结构信息,可以和目标特征互为补充,利用定义的融合目标特征和目标空间位置的度量函数来进行跟踪对象相似度度量,以提高跟踪算法的稳健性和精确性。同时针对粒子滤波计算粒子相似度时可并行的特点,运用OpenMP共享存储并行计算进行粒子滤波跟踪的加速。实验表明,基于融合目标特征和空间信息的粒子滤波跟踪算法能得到更鲁棒的跟踪效果,可以有效地提高目标跟踪的速度。 相似文献
13.
14.
In this paper, we propose a visual tracking algorithm by incorporating the appearance information gathered from two collaborative feature sets and exploiting its geometric structures. A structured visual dictionary (SVD) can be learned from both appearance and geometric structure, thereby enhancing its discriminative strength between the foreground object and the background. Experimental results show that the proposed tracking algorithm using SVD (SVDTrack) performs favorably against the state-of-the-art methods. 相似文献
15.
目的 由于受到光照变化、表情变化以及遮挡的影响,使得采集的不同人的人脸图像具有相似性,从而给人脸识别带来巨大的挑战,如果每一类人有足够多的训练样本,利用基于稀疏表示的分类算法(SRC)就能够取得很好地识别效果。然而,实际应用中往往无法得到尺寸大以及足够多的人脸图像作为训练样本。为了解决上述问题,根据基于稀疏表示理论,提出了一种基于联合判别性低秩类字典以及稀疏误差字典的人脸识别算法。每一类的低秩字典捕捉这类的判别性特征,稀疏误差字典反映了类变化,比如光照、表情变化。方法 首先利用低秩分解理论得到初始化的低秩字典以及稀疏字典,然后结合低秩分解和结构不相干的理论,训练出判别性低秩类字典和稀疏误差字典,并把它们联合起来作为测试时所用的字典;本文的方法去除了训练样本的噪声,并在此基础上增加了低秩字典之间的不相关性,能够提高的低秩字典的判别性。再运用l1范数法(同伦法)求得稀疏系数,并根据重构误差进行分类。结果 针对Extended Yale B库和AR库进行了实验。为了减少算法执行时间,对于训练样本利用随机矩阵进行降维。本文算法在Extended Yale B库的504维每类32样本训练的识别结果为96.9%。在无遮挡的540维每类4样本训练的AR库的实验结果为83.3%,1 760维的结果为87.6%。有遮挡的540维每类8样本训练的AR库的结果为94.1%,1 760维的结果为94.8%。实验结果表明,本文算法的结果比SRC、DKSVD(Discriminative K-SVD)、LRSI(Low rank matrix decomposition with structural incoherence)、LRSE+SC(Low rank and sparse error matrix+sparse coding)这4种算法中识别率最高的算法还要好,特别在训练样本比较少的情况下。结论 本文所提出的人脸识别算法具有一定的鲁棒性和有效性,尤其在训练样本较少以及干扰较大的情况下,能够取得很好地识别效果,适合在实际中进行应用。 相似文献
16.
目的 针对目标跟踪算法在现实场景的遮挡、光照变化和尺度变化等问题,提出一种融入时序信息和速度信息的多特征融合自适应模型更新目标跟踪算法。方法 通过提取目标的分级深度特征和手工设计方向梯度直方图(histogram of oriented gradients,HOG)特征,以全深度特征组合和深层深度特征与手工设计特征组合的方式构造两个融合特征器,提高在复杂场景下跟踪的稳健性;对融合特征进行可信度计算,选择最可靠融合特征对当前帧目标进行跟踪;在跟踪质量不可靠时,对目标表征模型进行更新,加入时间上下文信息和当前鲁棒表征信息,通过多峰值判定和运动速度判定选择最优目标预测位置作为最终结果。结果 在OTB(object tracking benchmark)2013和OTB2015数据库上进行大量测试,与其他7个算法相比,本文算法总体效果取得最优,且在不同复杂环境下也取得了优秀的跟踪效果,在OTB13和OTB15数据库中,跟踪精度分别为89.3%和83.3%,成功率分别为87%和78.3%。结论 本文算法利用深度特征与手工设计特征进行融合,对跟踪结果进行多峰值分析和运动速度判定,跟踪结果不佳时自适应更新特征进行重跟踪。实验结果表明,本文算法可以有效处理光照变化、背景杂波和遮挡等复杂因素的干扰,有效提升了跟踪质量。 相似文献
17.
Accurately detect vehicles or pedestrians from 3D point clouds (3D object detection) is a fast developing research topic in autonomous driving and other domains. The fundamental component for feature extraction in 3D object detection is Set Abstraction (SA), which can downsample points while aggregating points to extract features. However, the current SA ignores the geometric and semantic properties of point clouds and may miss to detect remote small objects. In this paper, FocusSA is proposed, which consists two modules for enhancing useful feature extraction in the SA layer to improve 3D object detection accuracy. At first, Focused FPS (FocFPS) is proposed to evaluate the foreground and boundary scores of the points and reweighs the Furthest Point Sampling (FPS) using the evaluated scores to retain more contextual points in downsampling. Then a Geometry-aware Feature Extraction (GeoFE) module is proposed to add geometric information to enrich the awareness of geometric structure in feature aggregation. To evaluate the performances of the proposed methods, we conduct extensive experiments on three difficulty levels of Car class in KITTI dataset. The experimental results show that on “moderate” instances, our results outperform the state-of-the-art method by 1.08%. Moreover, FocusSA is easy to be plugged in popular architectures. 相似文献
18.
Robust object tracking has been an important and challenging research area in the field of computer vision for decades. With the increasing popularity of affordable depth sensors, range data is widely used in visual tracking for its ability to provide robustness to varying illumination and occlusions. In this paper, a novel RGBD and sparse learning based tracker is proposed. The range data is integrated into the sparse learning framework in three respects. First, an extra depth view is added to the color image based visual features as an independent view for robust appearance modeling. Then, a special occlusion template set is designed to replenish the existing dictionary for handling various occlusion conditions. Finally, a depth-based occlusion detection method is proposed to efficiently determine an accurate time for the template update. Extensive experiments on both KITTI and Princeton data sets demonstrate that the proposed tracker outperforms the state-of-the-art tracking algorithms, including both sparse learning and RGBD based methods. 相似文献