首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
 采用球形孔和圆柱孔扩张(收缩)理论研究桩基与隧道的相互作用。首先,基于Mohr-Coulomb屈服准则,采用圆柱形孔收缩模型模拟隧道开挖过程,得到Pasternak地基上隧道开挖引起的邻近单桩弹塑性水平位移。其次,提出隧道开挖对邻近桩基承载能力弹塑性影响的计算方法。桩基总承载能力由桩端极限承载能力和桩身极限侧阻摩擦力两部分组成。其中,采用无限介质中球形孔扩张模型计算桩端小孔极限压力,并得到桩端极限承载能力;采用修正的?法计算临界状态下桩身等效平均剪应力分布,进而得到桩身极限侧阻摩擦力,该方法考虑隧道开挖对桩身剪应力的削减作用。在此基础上,计算隧道开挖过程对周围土体弹塑性应力的影响;分析隧道和桩基相对位置对桩基承载能力的影响;定义桩基总承载力降低到85%时桩基发生破坏,研究桩端与隧道中心相对间距与桩基破坏时隧道体积损失临界值的关系,并考察土体黏聚力、内摩擦角、密实度、土体模量以及桩径等参数的影响。结果表明,柱孔收缩弹塑性模型可以较好地模拟隧道开挖对邻近桩基弹塑性水平位移的影响;隧道开挖后在一定范围内形成一个塑性区,在该区域内土体有效应力影响因子Rp值小于1,表明对桩基承载能力有削减作用,当桩身全部处于塑性区以外时,其承载能力不受隧道开挖的影响;隧道和桩基相对位置对桩基承载能力有较大影响,当桩端与隧道中心的间距一定时,随着隧道埋深的增加,桩端极限承载力影响因子Rqb逐渐趋于1,说明增加隧道埋深对桩基承载力更加有利;桩基破坏时隧道体积损失临界值与桩端–隧道中心间距平方呈线性关系,桩基承载能力对土体模量比较敏感。  相似文献   

2.
于晨昀  王婷  王聪 《山西建筑》2009,35(36):339-341
采用两阶段法计算隧道开挖引起的自由场地土体沉降,通过连续分布的土体弹簧来模拟桩土间的相互作用,计算出桩周的负摩阻力,并考虑桩基的端承效应,对隧道施工对邻近桩基附加沉降和附加轴力计算进行了理论研究。  相似文献   

3.
传统方法计算浅埋隧道支护压力时,未考虑上覆土体主应力偏转过程,与实际情况不符且计算结果不准确。为真实分析和计算浅埋隧道支护压力,以砂土为研究对象,首先概括浅埋隧道围岩破坏模式,在此基础上分析隧道上覆土体主应力偏转过程和应力状态,得到水平微分土层平均竖向压力与侧向压力和层间平均剪切力的定量关系,进而建立水平微分土层受力平衡方程求解上覆土体竖向压力。最后以隧道侧面滑移土体为对象,通过受力平衡方程求解获得支护压力表达式。新方法考虑了上覆土体主应力真实偏转过程,较传统方法更符合实际,研究结果表明:距离隧道顶部中心线越远,水平正应力与大主应力比值越小;随着土体内摩擦角的增大,竖直正应力与大主应力比值呈现先减小后增大的规律。与模型试验结果对比表明:当隧道埋深较浅时,新方法计算所得支护压力与模型试验结果高度吻合,优于不考虑主应力偏转方法计算结果和半经验性的Terzaghi方法计算结果,从而验证了该方法的有效性,可为浅埋隧道支护设计提供一定理论依据。  相似文献   

4.
开挖条件下非均质地基中被动群桩水平反应分析   总被引:4,自引:0,他引:4       下载免费PDF全文
地下工程开挖包括基坑开挖、隧道开挖等,邻近建筑物的桩基因开挖引起的土体位移会产生弯矩和变形。基于两阶段分析方法,考虑土体的非线性,采用Winkler地基模型模拟被动单桩桩土之间的相互作用,运用有限差分法进行求解以考虑地基土的分层特性,并基于简化Mindlin方程考虑群桩的桩–桩相互影响,计算被动群桩的遮拦效应,从而得到开挖条件下被动群桩水平反应的简化分析方法。最后将基于两阶段分析方法的差分解法与边界元解、现场实测结果、离心机实验结果等进行对比,验证了该方法的合理性及实用性。  相似文献   

5.
目前就隧道开挖对桩基变形影响的解析理论研究一般基于Winkler地基模型,较少考虑地基的剪切变形和桩侧土体三维作用效应。基于Pasternak地基模型,首先推导了隧道开挖与邻近桩基相互作用的简化理论解,该解反映了地基剪切变形但未考虑桩侧土体三维作用效应。在此基础上,为反映桩侧土体三维作用效应,将其等效成集中力通过剪切层传递到桩基两侧,推导了体现三维作用效应的群桩反应表达式。将考虑与不考虑桩侧土体三维作用效应的结果进行对比,发现考虑桩侧土体三维作用效应的桩基水平位移和弯矩值更接近监测数据和离心试验数据。此外,还针对群桩影响因素进行了分析。结果表明:土体剪切变形对桩基影响不容忽视,剪切层模量越大,隧道开挖引起的桩身水平位移越小;桩径越大,桩身水平位移越小,桩身弯矩越大;桩基与隧道距离越小,桩基最大水平位移和弯矩值越大。  相似文献   

6.
正1对讨论稿问题的回复首先,感谢程康对"考虑桩侧土体三维效应和地基剪切变形的隧道开挖对邻近桩基影响分析"[1](以下简称"原文")的关注和讨论,下面简要叙述一下原文的研究思路,并针对程康提出的几个问题,逐点答复如下:原文从考虑土体剪切作用和三维作用效应两方面着手,重点分析了Pasternak地基下的考虑桩基侧向土体三维作用效应的隧道开挖引起邻近桩基的水平反应。原文提出的简化解析方法的优势在于以下两点:(1)Pasternak地基模型可以考虑地基的  相似文献   

7.
为了便捷现代城市交通,地铁系统普遍采用平行隧道模式。平行隧道开挖引起的场地沉降预测一般基于单一隧道工况,利用简化叠加法生成变形剖面,而没有考虑两个隧道之间的相互作用。采用透明土模型试验技术,自主研发平行隧道模型试验装置及试验方法,研究了在砂质场地上开挖平行隧道引起的地表和地层沉降特性。通过模型试验探索了平行隧道间距、土体损失率、埋深等要素对地表和地表沉降的影响规律。在此基础上,量化了土体损失率和场地沉降值间的数值关系。此数值关系可为砂质场地中平行隧道施工与设计提供参考依据,也为隧道间距初选以及埋深的初步确定提供理论支撑。  相似文献   

8.
基坑开挖对邻近桩基影响的两阶段分析方法   总被引:1,自引:0,他引:1  
 城市建筑物密集区深基坑开挖必然引起周围土体侧向移动,使邻近桩基产生水平变形和附加应力及弯矩,最终可能使上部建筑物功能失效。针对该领域目前存在的三维数值法建模复杂及计算耗时的缺点,提出两阶段分析法,该方法首先根据影像源法计算由于基坑开挖地层损失引起的坑外土体位移场,然后基于Winkler地基模型建立基坑开挖与邻近桩基相互作用的弹性地基梁微分方程组,并推导基坑开挖对临近桩基侧向响应影响的数学解析解矩阵表达式。最后结合实例分析表明,该方法计算结果合理可行,能够有效地分析基坑开挖对邻近桩基的影响。  相似文献   

9.
当桩顶作用有不可忽略的上覆外荷载时,通过桩身向周围土体传递的荷载必然会较大地改变桩周土体的应力状态,因此邻近隧道开挖引起的地层位移将会与自由场差别明显,为探究既有桩基在邻近盾构隧道开挖及桩基上覆荷载同时作用下的响应规律,结合两阶段法,通过引入Boxlucas1指数函数模型来描述桩土间的非线性作用,进而提出了在盾构开挖影响下,一种计算邻近既有桩基竖向响应的简化分析法,分析中考虑了当前研究中大都忽略的上覆外荷载作用,并分析了不同外荷载作用下的桩基响应规律。研究表明:当桩顶无荷载作用时,桩身轴力先增大后减小,最大轴力出现在隧道中心深度附近;当逐渐增加桩顶外荷载时,桩基下部的摩阻力先于上部到达极限,桩基轴力呈现出"先缓慢减小、再急剧减小、最后再缓慢减小"的"三段式"递减规律。  相似文献   

10.
盾构施工会对埋藏在土体中的邻近地下管线产生变形、破坏等不利影响。目前模型试验已经成为研究盾构隧道施工对邻近管线影响的重要方法。考虑管隧位置、管线材质、管线埋深等影响因素,对盾构隧道施工影响邻近管线的室内模型试验进行了综述,分析管线产生较大弯矩、沉降等不利影响的原因。综合分析当前研究存在的一些不足,提出进一步的研究思路和研究方向,为后续模型试验研究提供参考。  相似文献   

11.
基坑开挖与邻近桩基相互作用的弹塑性解   总被引:2,自引:0,他引:2       下载免费PDF全文
杜金龙  杨敏 《岩土工程学报》2008,30(8):1121-1125
基于弹性理论法和p–y曲线法,通过桩土间设置的界面滑块和土体统一极限抗力来考虑土体塑性屈服,提出了基坑开挖对邻近桩基影响的弹塑性解。其基本思想是将桩基视为一维杆系结构,其和周围土体的相互作用通过设置的由弹簧和滑块构成的界面单元实现。当土体处于弹性状态时,桩土变形协调,滑块不发生作用;当土体应力达到极限抗力时,土体发生塑性变形,滑块承受极限抗力并发生塑性滑动。计算中,土体弹性模量随土体位移变化,即桩土之间非线性关系,其值可通过各土层处p–y曲线确定。实例分析表明,该方法计算结果合理可行,能够较为有效的分析基坑开挖对邻近桩基的影响。  相似文献   

12.
隧道开挖对临近桩基影响的二维数值分析   总被引:1,自引:1,他引:0  
基于隧道开挖的工程实例,采用有限元方法,分析了临近桩基的隧道开挖对建筑物桩基的影响。选取了不同隧道挖深,模拟开挖对临近建筑物桩基础的影响。对开挖引起的地面、建筑物角点的沉降规律做了分析与探讨,同时也分析了桩和底板的弯矩、轴力、剪力等变化规律,得出了有意义的结论。  相似文献   

13.
采用有限元手段分析开挖施工对临近建筑物桩基影响规律,侧重于评估坑外地基加固控制开挖影响的有效性。对基坑开挖、地基加固以及邻近建筑桩基进行整体建模,以临近桩基承台水平位移为控制指标,对6种不同地基加固方案进行对比分析,研究复杂施工环境下地基加固控制开挖对已建和拟建建筑物影响的不同机理。研究表明,地基加固控制开挖对临近桩基的影响很大程度上取决于二者施工的前后性,开挖在临近桩基承载之后,则选择靠近临近桩基侧地基区段进行重点加固,反之,若开挖在临近桩承载之前,则选择近基坑侧地基区段进行重点加固。  相似文献   

14.
基坑开挖对临近桩基的保护一直是基坑工程的难题之一,控制围护墙变形是防止临近桩基破坏的最主要措施,而目前对于围护墙的变形控制标准主要是来源于统计结果,并不能反映临近桩基的变形承受能力.通过基于位移控制的基坑开挖对临近桩基础影响两阶段分析方法,建立基坑围护墙变形与桩基变形的关系,并进一步通过对基坑与桩基的主要相关参数分析提...  相似文献   

15.
针对国贸站西北和东北风道施工对近邻桥基沉降影响这一实际工程问题。运用ABAQUS软件,建立了两个风道施工过程中桩-土相互作用模型,在对施工过程进行动态模拟的同时,重点分析了不同施工方案对桥基绝对沉降和差异沉降的影响程度,并提出了优化的施工方案。研究表明,东北风道和西北风道不同的施工路径对桥基的沉降值影响不明显。但对桥基的差异沉降影响较为显著,从而表明,施工方案的优化是非常必要的。对该工程施工过程中为保障近邻桥基的安全提供了依据和指导作用。  相似文献   

16.
A major challenge in the design and construction of soil excavation and foundation pit engineering in urban areas is the protection of adjacent underground structures, such as existing tunnels. Excavation-induced soil unloading can adversely affect and even damage the tunnels in the vicinity. A simplified analytical approach is presented to analyze the deformation response for adjacent tunnels due to excavation-induced soil unloading in excavation engineering. Firstly, the green soil unloading stress due to adjacent excavation is estimated at the existing tunnel location. Secondly, the deformation response of the tunnel subjected to green soil unloading stress is calculated by the Galerkin’s method, which can be used to obtain the finite element equation converted from the differential equation. The accuracy of the proposed method is verified by comparisons with 3D finite element numerical simulation, centrifuge model tests provide by Kusakabe et al. (1985) and measured data in situ. Finally, the parametric analysis for deformation influence factors of the existing tunnel, including the tunnel buried depth, the distance from the excavation site, the soil geo-characters and the outer diameter of the tunnel, is presented to demonstrate the performance of the proposed method. This proposed method may provide certain basis to make protective measures of existing tunnels influenced by excavation engineering and enables a quick estimate of the deformation behavior of excavation-induced adjacent tunnels, resulting in savings in time and costs.  相似文献   

17.
基坑开挖卸荷会对邻近隧道产生影响,因此有必要对隧道的变形进行预测,确保隧道正常运行.针对目前计算模型的分析方法未考虑基坑壁应力卸荷对隧道位移的影响,以及有限元分析过程较为复杂繁琐,提出采用Mindlin解计算基坑壁与坑底卸荷的附加应力.然后将隧道结构视为弹性地基无限长梁,将开挖引起的附加应力施加于隧道结构上,建立隧道结构纵向变形方程,从而得到隧道位移及内力的计算公式.最后,将计算方法与数值模拟算例、工程实测进行对比分析,计算结果与其较为吻合.  相似文献   

18.
为研究基坑开挖过程中邻域既有隧道周围土体应力路径演变规律,采用Mindlin经典理论,求解基坑底部和四周侧壁卸荷效应在隧道围土各点引起的附加应力场,并与初始应力场相叠加可得各点的现有应力场与应力路径,选用Mohr-Coulomb强度准则作为土体破坏控制标准以判断隧道围土各方向土体安全度。研究表明 :(1)随基坑开挖深度增加,隧道围土各点应力路径呈现靠近主应力破坏线Kf的演变趋势,其中隧道顶部与靠近基坑侧土体处于易破坏状态,隧道底部与远离基坑侧土体处于较安全状态。(2)沿隧道轴向,基坑开挖对邻域既有隧道围土应力场影响以一倍、二倍基坑开挖宽度为界线。一倍基坑宽度内为强影响区,一倍至二倍基坑开挖宽度内为过渡区,二倍基坑宽度外为弱影响区。(3)基坑与隧道净距越大,基坑开挖对隧道顶部和靠近基坑侧土体应力路径影响越小,该方向计算点处土体应力路径演变规律越趋于相似和稳定。  相似文献   

19.
盾构法施工地铁隧道近距离侧穿高速公路桥梁桩基时,引起地层移动和应力调整,导致桩基位移和内力发生变化,给上部结构带来安全隐患。以杭州地铁3号线工大站—留和站盾构区间双线施工为依托,运用三维有限元软件模拟盾构开挖施工的全过程,研究开挖过程对地层沉降及邻近桥梁桩基影响规律。结果表明,先行隧道开挖导致地表形成沉降槽,后行隧道开挖沉降曲线向后行线扩展;桩基竖向呈现刚体位移,单线开挖时在横向(Y方向)上嵌入土体桩基上半部分向隧道内倾移,下半部分背离隧道方向倾移,在纵向(X方向)上桩基呈现拱形弯曲,双线开挖时桩基横向位移发生反向叠加效应,导致最终横向位移基本接近初始状态,纵向上弯曲位移发生正向叠加效应;双线隧道先后开挖使桩基产生附加摩阻力和附加轴力,在隧道顶面分界线以上桩基总侧摩阻力较初始状态不断减小,分界线以下增加,位于-2.5 m以上桩基轴力较初始状态减小,以下增加;单线开挖时桩基弯矩变化明显,双线开挖弯矩出现反向叠加效果,基本保持初始状态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号