首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
王超  姚若河  邝国华 《微电子学》2018,48(5):625-629
针对无片外电容LDO,在误差放大器与功率管之间添加缓冲器,采用频率补偿的方法,提高了环路稳定性。通过检测负载瞬态变化引起的误差放大器输出电压变化,增加对功率管栅极电容的充放电电流,提升了系统的快速瞬态响应能力。基于TSMC 0.18 μm标准CMOS工艺,设计了一种输入电压范围为1.92~3.60 V、输出电压为1.8 V的LDO。结果表明,负载在1 μs内从0变化到100 mA时,输出最大下冲电压为37.2 mV,响应时间为1.12 μs;负载在1 μs内从100 mA变化到0时,输出最大过冲电压为40.1 mV,响应时间为1.1 μs。  相似文献   

2.
针对无片外电容型低压差线性稳压器(LDO)瞬态响应差的问题,基于40 nm CMOS工艺设计了一种带瞬态负载变化感知的无片外电容型LDO电路。采用有源前馈频率补偿,实现了电路稳定;瞬变检测电路感应负载的变化,为功率管栅极提供充、放电通路,减弱了输出电压波动。仿真结果表明,负载电流在0~100 mA范围内,该LDO的输出过冲电压和下冲电压分别为100 mV和140 mV,稳定时间在1 μs以内。全负载电流范围内,瞬态性能大幅提升。  相似文献   

3.
设计了一种快速瞬态响应的无片外电容低压差线性稳压器(LDO)。采用具有摆率增强作用的缓冲级电路,可以在不额外增加静态电流的同时检测输出端电压,在负载瞬间变化时增大功率器件栅极电容的充放电电流。缓冲级电路还引入了简单的负反馈技术,增加了环路的相位裕度。采用SMIC 180 nm的CMOS工艺进行设计和仿真。仿真结果表明,当输入电压为1.4~5 V时,该LDO的输出电压为1.2 V,最大负载电流为300 mA; 负载电流在1 mA和300 mA间变化时,最大过冲电压为76.5 mV,响应时间仅为1.5 μs。  相似文献   

4.
周玉成  廖德阳  马磊  桑磊  黄文 《微电子学》2023,53(4):608-613
提出了一种稳定性高、瞬态特性良好、无片外电容的低压差线性稳压器(LDO)。采用推挽式微分器检测负载瞬态变化引起的输出电压变化,加大对功率管栅极寄生电容的充放电电流,增强系统的瞬态响应能力;在误差放大器后接入缓冲级,将功率管栅极极点推向高频,并采用密勒电容进行频率补偿,使系统在全负载范围内稳定。基于TSMC 65 nm CMOS工艺进行流片,核心电路面积为0.035 mm2。测试结果表明,最低供电电压为1.1 V时,压降仅为100 mV,负载电流1 μs内在1 mA和150 mA之间跳变时,LDO的最大输出过冲电压与下冲电压分别为200 mV和180 mV。  相似文献   

5.
《中国集成电路》2023,(3):26-30+64
针对SoC中电源管理模块对高功能-面积比和高瞬态响应的需求,本文提出一种基于翻转电压跟随器(FVF)的无片外电容低压差线性稳压器(LDO),采用电压峰值检测技术实现动态电流偏置,进而提升系统瞬态响应。基于SMIC 40nm工艺的仿真结果表明,在典型负载切换状态下,提出方案的下冲和上冲恢复时间相比传统的FVF结构LDO电路分别缩短了75%和29%。  相似文献   

6.
设计了一种快速瞬态响应的无片外电容型LDO。采用高增益高带宽的超级跨导结构(STC)的误差放大器,利用动态偏置技术与电容耦合技术,极大地增强了摆率。引入额外的快速响应环路,进一步提升了瞬态响应速度。基于0.18 μm CMOS工艺进行设计。结果表明,该LDO的最低供电电压为1 V,漏失电压仅为200 mV,可提供最大100 mA的负载电流,能在最大输出电容为100 pF、最低负载为50 μA的条件下保证电路稳定。负载电流在0.5 μs内由50 μA跳变至100 mA时,LDO输出导致的过冲电压和下冲电压分别为200 mV和306 mV。  相似文献   

7.
基于上华0.5μm工艺,设计了输入电压范围为3.5~6.5V,输出电压为3.3V,最大输出电流为100mA的CMOS无片外电容的低压差线性稳压器.提出了一种自动检测网络用来快速感应负载电流的变化,抑制输出电压的跳变,改善了负载瞬态响应.在稳定性方面,采用miller补偿,加之第二级采用了输出电阻很小的buffer结构[1],这样主极点和次极点分离很远使得系统稳定.仿真表明,该LDO在VIN=6.5V和VIN=3.5V下under-shoot分别为156mV和135mV,overshoot分别为145mV和60mV,线性调整率和负载调整率分别为0.023%和0.5%.  相似文献   

8.
针对便携式设备快速瞬态响应、低噪声、高电源抑制比等应用需求,提出了一种无片外电容NMOS型低压差线性稳压器(LDO)。该LDO基于浮栅结构,通过具有推挽输出级的放大器辅助控制,减小了电荷泵的噪声耦合;另外,通过取样输出电流控制误差放大器的输出动态范围,极大地提高了电路的瞬态响应能力。电路基于HHGrace 0.35μm BCD工艺设计,仿真结果表明,无外接电容时,负载电流在1μA~400 mA之间跳变,电路的下冲电压为203 mV,过冲电压为101 mV,响应时间小于1.5μs;在10 Hz~100 kHz的频段内,系统输出积分噪声电压为14μV·Hz-1/2。LDO达到了快速瞬态响应和低噪声的需求。  相似文献   

9.
提出了一种无片外电容、快速瞬态响应、宽输入电压范围的低压差线性稳压器(LDO)。该电路基于翻转电压跟随器(FVF)结构,不需额外增加辅助电路,仅使用两个电容作为检测模块,以动态调整瞬态响应,能够弥补传统LDO集成度低、面积大、功耗高、瞬态响应差的不足。电路基于TSMC 180 nm CMOS工艺。仿真结果表明,该LDO的压差为200 mV,静态电流为36μA,输入电压范围为2~4 V,低频时PSRR为-59 dB。在30 pF负载电容、0~10 mA负载电流、150 ns阶跃时间条件下,产生的上冲电压为50 mV,下冲电压为66 mV,瞬态电压恢复时间为300 ns。  相似文献   

10.
胡玉松  冯全源 《电子器件》2015,38(2):259-263
设计了一款无片外电容低压差线性稳压器(LDO),其瞬态响应速度极快,且增益高、带宽宽,输入电压范围为2.8V~5.0V,输出电压2.4V。使用HSPICE仿真验证了直流、交流、瞬态、温度等特性。在Typical工艺角情况下,负载电流以100mA/1μs突变时,输出电压突变量最大为89mV。重载与轻载模式下电压差也仅为16.8mV,在两种极端工艺角条件下,输出电压突变量最大108mV。此LDO无片外电容,整个片内补偿电容仅为4pF,3dB带宽为4068Hz,0dB带宽高达52MHz。  相似文献   

11.
提出了一种低输入电压的快速瞬态响应片上低压差线性稳压器(LDO)。采用基于反相器的轨-轨输入运放作为误差放大器(EA)的输入级。EA后级采用大抽灌电流能力的STCB结构。LDO加入了高通耦合结构,实现了低输入电压和全负载范围下的快速瞬态响应。该LDO无需外加偏置网络就能实现自启动。在Dongbu 0.5 μm CMOS工艺下,LDO的输入电压为2.2~2.7 V,输出电压为2 V。仿真结果表明,在负载电容为100 pF、压差为200 mV的条件下,该LDO可稳定输出0.1~100 mA的负载电流,负载在0.5 μs范围内切换时的电压尖峰在310 mV以内。  相似文献   

12.
张家豪  高笛  明鑫  甄少伟  张波 《微电子学》2018,48(2):189-196
提出了一种全负载范围内具有较高增益和带宽的片上快速瞬态响应的低压差线性稳压器(LDO)。误差放大器采用带瞬态增强的高跨导、高摆率、高输出阻抗STCB结构。推挽式微分器兼具频率补偿和快速瞬态响应功能,在大幅提升LDO瞬态响应速度的同时,节省了补偿电容面积。增加了自适应偏置,缓解了重载下增益和带宽下降的问题。该LDO基于0.5 μm标准CMOS工艺进行设计,芯片面积为0.077 mm2。结果表明,在负载电容为100 pF、压差为100 mV的条件下,该LDO可稳定输出50 μA ~100 mA的负载电流。负载在0.5 μs内以最大电流范围切换时,输出电压变化峰值在300 mV以内。  相似文献   

13.
邹锐恒  邝建军  熊进  明鑫  王卓  张波 《微电子学》2022,52(6):1009-1015
设计了一种应用于片外大电容场景下的具有快速瞬态响应特性的LDO。电路通过采用负载电流采样负反馈的结构构成了一个高带宽的电压缓冲器。该LDO使用具有电容倍增功能的共栅共源补偿结构,在外挂1μF负载电容的条件下,仅需500 fF的片上补偿电容即可保证在全负载范围内的稳定性。此外,通过使用自适应偏置技术,在减小轻载功耗的同时进一步提升了瞬态响应速度。电路采用0.18μm CMOS工艺进行设计与仿真验证。仿真结果表明,在LDO的输入电压为1.2 V、输出电压为1 V时,当负载电流以0.1μs的速度在150 mA和100μA之间切换时,最大电压变化仅为10.7 mV,输出电压恢复时间小于0.7μs。  相似文献   

14.
设计了一种基于摆率增强的快速瞬态响应无片外电容LDO电路。其中,误差放大器采用电流镜跨导结构,降低了频率补偿的难度系数;设计了一种可以为功率管栅极提供额外充放电电流的瞬态提升电路(TEC),能快速响应负载的变化,增大摆率,有效提升了负载瞬态响应。仿真结果表明,电路仅使用简单的密勒密勒补偿,即可实现相位裕度在全负载范围内大于60°;在0.5μs的时间内,负载在100μA和100 mA之间发生跳变,电路的下冲电压和过冲电压分别是69 mV和64 mV,稳定时间分别是0.89μs和0.86μs。相较无TEC,本文电路的下冲/过冲电压分别衰减73%和78%,负载瞬态响应显著提升。  相似文献   

15.
赵宁  宋奎鑫  童伟 《微电子学》2014,(5):634-639
设计了一种快速瞬态响应LDO。采用缓冲级结构的增强电路,使功率器件在负载瞬态变化时,栅极能够及时响应,从而避免了较大的电压上冲与下冲。加入缓冲级电路以后,系统的稳定性变差,采用密勒补偿和前馈补偿对其进行频率补偿,增加系统的相位裕度,使系统稳定。采用CSMC 0.5 μm工艺,利用Cadence工具完成了整体电路的设计、前仿真、物理版图设计和后仿真,并进行了流片。测试结果表明,设计的LDO输出电压为2.5 V,负载电流在10 mA和300 mA之间变化时,电压最大变化48 mV,响应时间为12.4 μs。  相似文献   

16.
周朝阳  冯全源 《微电子学》2016,46(2):207-210, 218
设计了一款适用于高压电源芯片的无片外电容快速瞬态响应型自启动低压差线性稳压器(LDO)。该LDO与芯片内部基准电路形成自供电自偏置环路,节省了芯片面积,适用电压范围为3.6~16.0 V,输出电压为5.10 V,具有功耗低、带宽宽等特点。电路采用Hspice进行仿真验证,在典型工艺角下,负载电流经100 mA/μs突变时,输出电压突变量最大为98 mV;在两种极端工艺角下,输出电压突变量最大为111 mV。环路特性仿真验证表明,该LDO带宽为3.6 MHz,3 dB带宽为2.5 MHz,相位裕度约75°,片内补偿电容仅3 pF。  相似文献   

17.
通过对传统单环LDO的频域分析,提出一种快速瞬态响应的双环路LDO稳压器结构,在保证单位增益带宽不变的前提下提高直流增益,进而提高LDO电路的瞬态性能。设计采用0.6μm BiCMOS高压工艺,Hspice仿真中输出电容为2.2μF,ESR为0.5Ω,旁路电容为1.0μF。负载电流从20 mA到180 mA变化时,其负载调整率仅为0.6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号