首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
We have demonstrated the utility of ultrasound backscatter microscopy for targeted intraparenchymal injections into embryonic day (E) 13.5 mouse embryos. This system has been used to test the degree of commitment present in neural progenitors from the embryonic ventral telencephalon and mid-hindbrain region. Many E13.5 ventral telencephalic progenitors were observed to integrate and adopt local phenotypes following heterotopic transplantation into telencephalic or mid-hindbrain targets, whereas mid-hindbrain cells of the same stage were unable to integrate and change fate in the telencephalon. In contrast, many mid-hindbrain cells from an earlier developmental stage (E10.5) were capable of integrating and adopting a forebrain phenotype after grafting into the telencephalon, suggesting that mouse mid-hindbrain progenitors become restricted in their developmental potential between E10.5 and E13.5.  相似文献   

2.
Neural progenitor cell lines, generated by conditional immortalization from the embryonic CNS, have previously been shown to survive and integrate after transplantation to the adult brain. The present study was designed to investigate the in vivo differentiation and morphological features of grafted neural progenitors using combined autoradiography and transmission electron microscopy of two temperature-sensitive neural progenitor cell lines, HiB5 and ST14A, labeled with 3H-thymidine prior to grafting. Two weeks after transplantation to the striatum the cells were found dispersed over an area extending about 1.5 mm from the injection site. Labeled cells located within the myelinated fiber bundles of the internal capsule were closely associated with myelinated axons and presented profiles similar to oligodendrocytes, while most of the grafted cells in the grey matter had morphological features of astroglia. Some labeled cells occurred also in close association with small blood vessels, morphologically resembling host pericytes. The results show that the immortalized neural progenitors can differentiate into mature glial cells, including astrocytes, oligodendrocytes and pericytes, after implantation into the adult striatum. The ability of the cells to become fully integrated with the resident glial population suggests that they will be highly useful as vehicles for intracerebral transgene expression in ex vivo gene transfer.  相似文献   

3.
The mammalian subventricular zone (SVZ) of the lateral wall of the forebrain ventricle retains a population of proliferating neuronal precursors throughout life. Neuronal precursors born in the postnatal and adult SVZ migrate to the olfactory bulb where they differentiate into interneurons. Here we tested the potential of mouse postnatal SVZ precursors in the environment of the embryonic brain: (i) a ubiquitous genetic marker, (ii) a neuron-specific transgene, and (iii) a lipophilic-dye were used to follow the fate of postnatal day 5-10 SVZ cells grafted into embryonic mouse brain ventricles at day 15 of gestation. Graft-derived cells were found at multiple levels of the neuraxis, including septum, thalamus, hypothalamus, and in large numbers in the midbrain inferior colliculus. We observed no integration into the cortex. Neuronal differentiation of graft derived cells was demonstrated by double-staining with neuron-specific beta-tubulin antibodies, expression of the neuron-specific transgene, and the dendritic arbors revealed by the lipophilic dye. We conclude that postnatal SVZ cells can migrate through and differentiate into neurons within multiple embryonic brain regions other than the olfactory bulb.  相似文献   

4.
Embryonic cerebellar, neocortical, and striatal tissues derived from NSE-LacZ transgenic mice were transplanted into the right cerebellar hemisphere of 8- to 10-day-old Lurcher or wild-type mice. Host mice survived for 30-90 days and the transplanted tissue was examined by light microscopy using Nissl staining, X-gal histochemistry, and immunohistochemistry for calcium binding protein and glutamic acid decarboxylase. Transplantation of cerebellar tissue, but not neocortical or striatal progenitors, resulted in robust infiltration of the lurcher mutant host cerebellar cortex by transgenic Purkinje neurons. Deep to the infiltrated molecular layer, the host granular layer was thicker and denser than the mutant granular layer, but transgenic cells did not contribute to the spared granular layer. The host inferior olivary complex consistently exhibited a noticeable bilateral asymmetry in Nissl-stained sections. A quantitative analysis of the olivary complex was performed in 10 90-day-old host mice. The results indicate that the left inferior olivary complex of 90-day-old host mice contained more neurons than the right inferior olive of the host mice and contained more neurons than was observed in 90-day-old Lurcher control mice. Analysis by olivary subdivision indicates that increased neuron numbers were present in all subdivisions of the host left inferior olive. These studies confirm the specific attractive effect of the mutant cerebellar cortex on transplanted Purkinje neuron progenitors and indicate that neural transplants may survive the neurodegenerative period to interact with developing host neural systems. The unilateral rescue of Lurcher inferior olivary neurons in cerebellar transplant hosts indicates that transplanted neurons may interact with diseased host neural circuits to reduce transneuronal degeneration in the course of a neurodegenerative disease.  相似文献   

5.
The aim of the present study was to determine the afferent connections of the nucleus accumbens in snakes, in particular its catecholaminergic input. For that purpose, in vitro and in vivo applications of retrograde tracers in the nucleus accumbens of Elaphe guttata were combined with tyrosine hydroxylase (TH) immunohistochemistry. Both techniques revealed telencephalic inputs to the nucleus accumbens originating from the diagonal band of Broca, ventral pallidum, amygdaloid complex, and dorsal cortex. Major diencephalic inputs arise from the dorsomedial thalamic nucleus and the hypothalamus. In the brainstem, a few retrogradely labeled cells were observed in the raphe nucleus and the locus coeruleus. Considerably more cells were found in the midbrain tegmentum. Within the confines of the locus coeruleus and, in particular, the midbrain tegmentum, retrogradely labeled cells stained also for TH suggesting that those areas constitute the major catecholaminergic input to the nucleus accumbens of snakes. The experimental approach used in the present study, in particular the in vitro technique, seems to be very suited for studying the development of basal ganglia organization of reptiles in the near future.  相似文献   

6.
Primary cell cultures from cerebral cortex, striatum and ventral mesencephalon obtained from rat fetal (embryonic day 17, E17) or postnatal (day 2, PN2) donors were grown either in media conditioned by subcultured astroglia from the same regions, an artificial trophic medium, normal human amniotic fluid, or in normal human cerebrospinal fluid. To estimate the presence of neuronal-like and non-neuronal cells, cell morphology and immunocytochemistry against microtubule-associated proteins and beta-tubulin were taken into consideration. The percentage of emitting neural cells and length of cell processes were determined after 24 hr in culture. Growth of cell processes in neuronal and non-neuronal cells from prenatal striatum was minimal compared with that in cerebral cortex and ventral mesencephalon, regardless of the culture condition. Nerve growth factor, basic fibroblast growth factor or epidermal growth factor did not significantly modify cell growth in E17 cultures, except for epidermal growth factor, which reduced the number of emitting cells in striatal cultures and increased it in cerebral cortex ones. Cultures derived from postnatal striatum showed a significant increase in neurite length when grown in an astroglial conditioned medium as compared to cultures derived from prenatal (E17) striatum. Results suggest significant regional differences in the brain regarding growth of cell processes at age E17, and reversal of striatal ability to grow cell processes by postnatal day 2. Reduced growth of cell processes showed by E17 striatum cultures was rather independent of the culture media. This fact could suggest that such early regional differences would depend on characteristics of sublineages present at this developmental stage, which would modulate the organization of regional neuropils. The restricted growth of cell processes in cultures from E17 striatum, no longer present in postnatal striatum, suggests that inputs to the striatum may modify expression of cell lineages at later stages of development.  相似文献   

7.
Grafting experiments have demonstrated that determination of anteroposterior (AP) identity is an early step in neural patterning that precedes dorsoventral (DV) specification [1,2]. These studies used pieces of tissue, however, rather than individual cells to address this question. It thus remains unclear whether the maintenance of AP identity is a cell-autonomous property or a result of signaling between cells within the grafted tissue. Previously, we and others [3-5] have used transplants of dissociated brain cells to show that individual telencephalic precursor cells can adopt host-specific DV identities when they integrate within novel regions of the telencephalon. We have now undertaken a set of transplantations during the same mid-neurogenic period used in the previous studies to assess the ability of telencephalic progenitors to integrate and differentiate into more posterior regions of the neuraxis. We observed that telencephalic progenitors were capable of integrating and migrating within different AP levels of the central nervous system (CNS). Despite this, we found that telencephalic progenitors that integrated within the diencephalon and the mesencephalon continued to express a telencephalic marker until adulthood. We speculate that during neurogenesis individual progenitors are determined in terms of their AP but not their DV identity. Hence, AP identity is maintained cell autonomously within individual progenitors.  相似文献   

8.
Transplantation of embryonic neurons to the adult mammalian central nervous system (CNS) offers the possibility of re-establishing neural functions lost after traumatic injuries or neurodegenerative disease. In the adult CNS, however, transplanted neurons and their growing neurites can become confined to the graft region, and there may also be a relative paucity of afferents innervating grafted neurons. Because glia may influence the development and regeneration of CNS neurons, the present study has characterized the distribution of astrocytes and developmentally regulated glycoconjugates (chondroitin-6-sulfate proteoglycan and tenascin) within regions of the embryonic mouse CNS used as donor tissues, and in and around these grafts to the adult striatum and substantia nigra. Both chondroitin-6-sulfate proteoglycan and tenascin are present in the embryonic ventral mesencephalon (in association with radial glia and their endfeet, and glial boundaries that cordon off the ventral mesencephalon dopamine neuron migratory zone) and lateral ganglionic eminence before transplantation, and they are conserved within grafts of these tissues to the adult mouse. Neostriatal grafts exhibit a heterogeneous pattern of astrocyte and extracellular matrix molecule distribution, unlike ventral mesencephalon grafts, which are rather homogeneous. There is evidence to suggest that, in addition to variation in astroglial/extracellular matrix immunostaining within different compartments in striatal grafts to either adult striatum or substantia nigra, there are also boundaries between these compartments that are rich in glial fibrillary acidic protein/extracellular matrix components. Substantia nigra grafts, with cells immunoreactive for tyrosine hydroxylase, are also rich in immature astroglia (RC-2-immunopositive), and as the astroglia mature (to glial fibrillary acidic protein-positive) over time the expression of chondroitin-6-sulfate proteoglycan and tenascin is also reduced. These same extracellular matrix constituents, however, are only slightly up-regulated in an area of the adult host which surrounds the grafted tissue. Glial scar components exhibit no obvious differences between grafts from different sources to homotopic (e.g., striatum to striatum) or heterotopic (e.g., substantia nigra to striatum) sites, and likewise grafts of non-synaptically associated structures (e.g., cerebellum to striatum), needle lesions or vehicle injections all yield astroglial/extracellular matrix scars in the host that are indistinguishable. Studies utilizing the ROSA-26 transgenic (beta-galactosidase-positive) mouse as a host for non-5-bromo-4-chloro-3-indolyl-beta-d-galactopyranoside-labeled grafts indicate that the early astroglial/extracellular matrix response to the graft is derived from the surrounding host structures. Furthermore, biochemical analysis of one of the "boundary molecules", tenascin, from the developing ventral mesencephalon versus adult striatal lesions, suggests that different forms of the molecule predominate in the embryonic versus lesioned adult brain. Such differences in the nature and distribution of astroglia and developmentally regulated extracellular matrix molecules between donor and host regions may affect the growth and differentiation of transplanted neurons. The present study suggests that transplanted neurons and their processes may flourish within graft versus host regions, in part due to a confining glial scar, but also because the extracellular milieu within the graft site remains more representative of the developmental environment from which the donor neurons were obtained [Gates M. A., et al. (1994) Soc. Neurosci. Abstr. 20, 471].  相似文献   

9.
Transplantation of immature CNS-derived cells into the developing brain is a powerful approach to investigate the factors that regulate neuronal position and phenotype. CNS progenitor cells dissociated from the embryonic striatum and implanted into the brain of embryos of the same species generate cells that reaggregate to form easily recognizable structures that we previously called clusters and cells that disperse and integrate as single cells into the host brain. We sought to determine if the neurons in the clusters differentiate according to their final location or acquire a striatal phenotype in heterotopic positions. We transplanted dissociated cells from the E14 rat medial and lateral ganglionic eminences, either combined or in isolation, into the E16 embryonic rat brain. At all time points, we found clusters of BrdU- and DiI-labelled donor cells located in the forebrain and hindbrain, without any apparent preference for striatum. Immunocytochemical analyses revealed that cells in the clusters expressed DARPP-32 and ARPP-21, two antigens typically co-expressed in striatal medium-sized spiny neurons. In agreement with observations previously noted by several groups, isolated cells integrated into heterologous host areas do not express basal ganglia phenotypes. These data imply that immature striatal neuronal progenitors exert a community effect on each other that is permissive and/or instructive for development of a striatal phenotype in heterotopic locations.  相似文献   

10.
11.
Quantitative immunoblot analyses were carried out to study the distribution of N-methyl-D-aspartate (NMDA) receptor subunit 2A and 2B (NR2A and NR2B, respectively) at the protein level in the adult rat brain. Highest levels of NR2A were detected in cerebral cortex and hippocampus, followed at more or less similar levels (about 36-72% of cerebral cortex) by striatum, thalamus, olfactory bulb, superior and inferior colliculi, and cerebellum. The lowest levels were detected in midbrain and lower brain stem (30-31% of cerebral cortex). The NR2B was more dramatic in differential distribution than the NR2A. Highest levels of NR2B were found in telencephalic (olfactory bulb, cerebral cortex, hippocampus, and striatum) and thalamic regions, and expression in superior and inferior colliculi, midbrain, lower brain stem, and cerebellum were significantly lower (4-25% of cerebral cortex). Interestingly, NR2B proteins were barely detectable in the cerebellum. When the postsynaptic density (PSD) fractions were compared, the amount of NR2B in the cerebellar PSD fraction was only 1.8% of that present in the cerebral PSD fraction where the subunit is highly enriched. Immunoblot analyses with a phosphotyrosine-specific antibody showed that the molecular sizes of major phosphotyrosine-containing proteins in forebrain and hindbrain are 180 and 45 kDa, respectively. The regional distribution of the 180 kDa major phosphotyrosine protein was very similar to that of NR2B, and the protein could be immunoprecipitated by NR2B antibody. Our data shows that NR2A and NR2B subunits are differentially distributed in the brain in an overlapping manner, and that the major phosphotyrosine-containing protein of 180 kDa in forebrain is the NR2B.  相似文献   

12.
Glial cell line-derived neurotrophic factor (GDNF) exhibits potent effects on survival and function of midbrain dopaminergic (DA) neurons in a variety of models. Although other growth factors expressed in the vicinity of developing DA neurons have been reported to support survival of DA neurons in vitro, to date none of these factors duplicate the potent and selective actions of GDNF in vivo. We report here that neurturin (NTN), a homolog of GDNF, is expressed in the nigrostriatal system, and that NTN exerts potent effects on survival and function of midbrain DA neurons. Our findings indicate that NTN mRNA is sequentially expressed in the ventral midbrain and striatum during development and that NTN exhibits survival-promoting actions on both developing and mature DA neurons. In vitro, NTN supports survival of embryonic DA neurons, and in vivo, direct injection of NTN into the substantia nigra protects mature DA neurons from cell death induced by 6-OHDA. Furthermore, administration of NTN into the striatum of intact adult animals induces behavioral and biochemical changes associated with functional upregulation of nigral DA neurons. The similarity in potency and efficacy of NTN and GDNF on DA neurons in several paradigms stands in contrast to the differential distribution of the receptor components GDNF Family Receptor alpha1 (GFRalpha1) and GFRalpha2 within the ventral mesencephalon. These results suggest that NTN is an endogenous trophic factor for midbrain DA neurons and point to the possibility that GDNF and NTN may exert redundant trophic influences on nigral DA neurons acting via a receptor complex that includes GFRalpha1.  相似文献   

13.
Melanocytes in the skin are derived from the embryonic neural crest. Recently, mutations in endothelin 3 and the endothelin receptor B genes have been shown to result in gross pigment defects, indicating that this signalling pathway is required for melanocyte development. We have examined the effects of endothelins on melanocyte progenitors in cultures of mouse neural crest. Firstly, they stimulate an increase in progenitor number and act synergistically with another factor, Steel factor, in the survival and proliferation of the progenitors. These findings are consistent with findings from mice with natural mutations in the endothelin receptor B gene, which show an early loss of melanocyte progenitors. Secondly, endothelins induce differentiation of the progenitors into fully mature pigmented melanocytes. This finding is consistent with the expression of endothelins in the skin of mice at the initiation of pigmentation. The melanocytes generated in endothelin-treated cultures also become responsive to alpha melanocyte-stimulating hormone, which then acts to regulate the activity of the pigmentation pathway. These findings indicate two key roles for endothelin in melanocyte development: regulation of expansion of the progenitor pool and differentiation of progenitors into mature melanocytes.  相似文献   

14.
It has been suggested that inflammation related to intracerebral transplantation surgery can affect the survival of intrastriatal neural allografts. To test this hypothesis, we transplanted dissociated embryonic mesencephalic tissue from one of two rat strains, Lewis (allogeneic grafts) or Sprague-Dawley (syngeneic grafts), to the striatum of Sprague-Dawley rats. The target striatum was either intact or had received a local injection of quinolinic acid 9 days earlier, in order to induce a marked inflammation. At 6 or 12 weeks after transplantation, there was no significant difference between the different groups regarding the number of surviving grafted tyrosine hydroxylase immunoreactive neurons. However, the graft volume of both the syngeneic and allogeneic implants was significantly larger in the quinolinate-lesioned than in the intact striatum. There were dramatically increased levels of expression of major histocompatibility complex class I and II antigens, marked infiltrates of macrophages, activated microglia and astrocytes, and accumulation of large numbers of CD4 and CD8 positive T-lymphocytes in the quinolinate-lesioned striatum. In contrast, these immunological markers were much less abundant around both syngeneic and allogeneic grafts placed in intact striatum. We conclude that severe inflammation caused by quinolinic acid does not lead to rejection of intrastriatal neural allografts.  相似文献   

15.
We unilaterally destroyed the nasal radix of rat embryos on day 15.5 of gestation (E15.5) in utero so as to block the olfactory inputs to the ipsilateral forebrain vesicle. The embryonic brains were examined after 6 days' survival (E21.5). In the deafferented half of the brain, LHRH neurons were significantly reduced in number, indicating the successful blocking of the olfactory input. On the deafferented side, the olfactory bulb failed to develop, and the telencephalic hemisphere, small in size, accompanied various histogenetic retardations in the primary olfactory cortex, in the cortical plate, and in the hippocampal formation. The striatum revealed remarkable structural differences between the ipsilateral and contralateral sides: on the ipsilateral side, the striatum was small in size and displayed numerical reductions of immunoreactive tyrosine hydroxylase (TH) fibers and substance P (SP) neurons in comparison with those in the contralateral one; in the substantia nigra, TH neurons and SP fibers were less numerous on the deafferented side. There were no remarkable differences in the distribution of TH neurons in the hypothalamus. In view of these sequential histogenetic alterations, it can be assumed that the olfactory inputs play a key role in the telencephalic morphogenesis.  相似文献   

16.
We have analyzed the developmental pattern of beta-galactosidase (beta-gal) expression in the cerebral cortex of the beta 2nZ3'1 transgenic mouse line, which was generated using regulatory elements of the beta 2-microglobulin gene and shows ectopic expression in nervous tissue. From embryonic day 10 onward, beta-gal was expressed in the medial and dorsal cortices, including the hippocampal region, whereas lateral cortical areas were devoid of labeling. During the period of cortical neurogenesis (embryonic days 11-17), beta-gal was expressed by selective precursors in the proliferative ventricular zone of the neocortex and hippocampus, as well as by a number of migrating and postmigratory neurons arranged into narrow radial stripes above the labeled progenitors. Thus, the transgene labels a subset of cortical progenitors and their progeny. Postnatally, radial clusters of beta-gal-positive neurons were discernible until postpartum day 10. At this age, the clusters were 250 to 500 microns wide, composed of neurons spanning all the cortical layers and exhibiting several neuronal phenotypes. These data suggest molecular heterogeneity of cortical progenitors and of the cohorts of postmitotic neurons originating from them, which implies intrinsic molecular mosaicism in both cortical progenitors and developing neurons. Furthermore, the data show that neurons committed to the expression of the transgene migrate along very narrow, radial stripes.  相似文献   

17.
18.
This paper reviews the organization of the avian and mammalian striatum. The striatum receives input from virtually the entire rostrocaudal and mediolateral expanse of the cerebral cortex. The corticostriatal projections appear to be glutamatergic, forming excitatory synapses in the striatum. Another major projection to the avian striatum that also appears to be glutamatergic stems from a set of nuclei in the dorsal zone of the avian thalamus that are comparable to the mammalian intralaminar, mediodorsal, and midline nuclei. Furthermore, the striatum receives a massive projection from dopaminergic neurons of the ventral tegmental area and substantia nigra in the midbrain tegmentum. In return, the midbrain tegmentum receives a direct GABAergic/substance P-ergic/ dynorphinergic projection from the striatum, as well as an indirect one formed by GABAergic/substance P-ergic/ dynorphinergic and GABA-ergic/enkephalinergic striatal neurons projecting to the pallidum in the first step, and pallidal GABAergic/LANT6/parvalbumin neurons projecting to the midbrain tegmentum in the second step. In addition to its projection neurons, the striatum possesses GABAergic and cholinergic interneurons. One motor output pathway of the striatum runs via the pallidum and dorsal thalamic ventral tier nulei to the motor cortex. In addition to this pathway, birds possess a major descending pathway from the basal ganglia to the tectum via the GABAergic nucleus spiriformis lateralis in the pretectum. On hodological and topological grounds, similar nuclei, although not GABAergic, can be found in mammals. Finally, an other striatal motor output is formed by a sequential GABAergic pathway from the basal ganglia via the substantia nigra to the tectum. In conclusion, it appears that the organization of the avian and mammalian basal ganglia is similar rather than different.  相似文献   

19.
Individual neural progenitors, derived from the external germinal layer of neonatal murine cerebellum, were previously immortalized by the retrovirus-mediated transduction of avian myc (v-myc). C17-2 is one of those clonal multipotent progenitor cell lines (Snyder et al., 1992, Cell 68: 33-51; Ryder et al., 1990, J. Neurobiol. 21:356-375). When transplanted into newborn mouse cerebellum (CB), the cells participate in normal CB development; they engraft in a cytoarchitecturally appropriate, nontumorigenic manner and differentiate into multiple CB cell types (neuronal and glial) similar to endogenous progenitors (Snyder et al., 1992, as above). They also appear to engraft and participate in the development of multiple other structures along the neural axis and at multiple other stages (Snyder et al., 1993, Soc. Neurosci. Abstr. 19). Thus conclusions regarding these immortalized progenitors may be applicable to endogenous neural progenitors in vivo. To help identify and analyze factors that promote differentiation of endogenous progenitors, we first investigated the ability to maintain C17-2 cells in a defined, serum-free medium (N2). The cells survive in vitro in N2 but undergo mitosis at a very low rate. Addition of epidermal growth factor (EGF), however, either from mouse submaxillary gland or the human recombinant protein, appreciably stimulates thymidine incorporation and cell division approximately threefold. Basic fibroblast growth factor (bFGF) is an even more potent mitogen, promoting thymidine incorporation, cell division, and a net increase in cell number equal to that in serum. Both EGF and bFGF are active at very low nanomolar concentrations, suggesting that they interact with their respective receptors rather than a homologous receptor system. The findings demonstrate that C17-2 cells can be maintained and propagated in a fully defined medium, providing the basis for analysis of other growth and differentiation factors. That EGF and particularly bFGF are mitogenic for these cells is in accord with recent observations on primary neural tissue (Reynolds and Weiss, 1992, Science 255:1707-1710; Kilpatrick and Bartlett, 1993, Neuron 10:255-265; Ray et al., 1993, Proc. Natl. Acad. Sci. USA 90:3602-3606) suggesting that bFGF and EGF responsiveness may be fundamental properties of neural progenitors.  相似文献   

20.
The aim of the present study is to examine whether serotonergic fibers of the striatum of the rat contain aromatic L-amino acid decarboxylase (AADC). By use of a double-labeling immunofluorescence method, we showed that AADC was localized in serotonergic fibers of the striatum and cerebral cortex as well as in serotonergic cell bodies of the midbrain raphe nuclei. We previously demonstrated that serotonergic fibers of the rat striatum contained dopamine after intraperitoneal injection of L-dopa. These findings suggest that dopamine is produced from the injected L-dopa in serotonergic fibers of the rat striatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号