首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Utilizing synergetic effect of different ingredients is an important strategy to design new multi-functional composites. In this work, high-strength graphene oxide and conductive polyaniline were selected to dope into divinylbenzene to fabricate a new type carbon fiber reinforced polymer laminates, where a cooperative improvement of through-thickness electrical conductivity and interlaminar shear strength was observed. With addition of 15 wt% of PANI-GO at the optimized weight ratio of 60:1 in the CF/DVB-PANI-GO, 150% enhancement of the electrical conductivity compared to the CF/DVB-PANI, and 76% enhancement of the ILSS compared to the CF/DVB-GO were realized. Our laminates reach 66% in ILSS of that for the conventional CFRP made of epoxy, but the former features about 103 times higher AC conductivity. The mechanism for such a synergic enhancement for both electrical and mechanical performance was investigated by rheology measurement and scanning electron microscopy, where uniform 3-D network formed by PANI/GO has been clearly observed.  相似文献   

2.
An investigation of the through-thickness properties of carbon fibre prepreg laminates, Non-Crimp Fabric laminates and non-crimp 3D orthogonal woven composites by pull-through testing was performed. Influence of matrix system and curing temperature on the performance of the 3D woven composites was investigated.  相似文献   

3.
Polyimide (PI) composites containing one-dimensional SiC nanowires grown on two-dimensional graphene sheets (1D–2D SiCNWs-GSs) hybrid fillers were successfully prepared. The PI/SiCNWs-GSs composites synchronously exhibited high thermal conductivity and retained electrical insulation. Moreover, the heat conducting properties of PI/SiCNWs-GSs films present well reproducibility within the temperature range from 25 to 175 °C. The maximum value of thermal conductivity of PI composite is 0.577 W/mK with 7 wt% fillers loading, increased by 138% in comparison with that of the neat PI. The 1D SiC nanowires grown on the GSs surface prevent the GSs contacting with each other in the PI matrix to retain electrical insulation of PI composites. In addition, the storage modulus and Young’s modulus of PI composites are remarkably improved in comparison with that of the neat PI.  相似文献   

4.
This paper investigates the through-thickness tensile behavior of woven glass fiber reinforced polymer (GFRP) composite laminates at cryogenic temperatures. Tensile tests were carried out with cross specimens at room temperature and liquid nitrogen temperature (77 K), and the through-thickness elastic and strength properties of the woven GFRP laminates were evaluated. The failure characteristics of the woven GFRP laminates were also studied by optical and laser scanning microscopy observations. A three-dimensional finite element analysis was performed to calculate the stress distributions in the cross specimens, and the failure conditions of the specimens were examined. It is found that the cross specimen is suitable for the cryogenic through-thickness tensile characterization of laminated composite materials. In addition, the through-thickness Young's modulus of the woven GFRP composite laminates is dominated by the properties of the matrix polymer in the given temperature, while the tensile strength is characterized by both, the fiber to matrix interface energy and the cohesion energy of the matrix polymer.  相似文献   

5.
Mechanical properties and thermal conductivity of composites made of nanodiamond with epoxy polymer binder have been studied in a wide range of nanodiamond concentrations (0-25 vol.%). In contrast to composites with a low content of nanodiamond, where only small to moderate improvements in mechanical properties were reported before, the composites with 25 vol.% nanodiamond showed an unprecedented increase in Young’s modulus (up to 470%) and hardness (up to 300%) as compared to neat epoxy. A significant increase in scratch resistance and thermal conductivity of the composites were observed as well. The improved thermal conductivity of the composites with high contents of nanodiamond is explained by direct contacts between single diamond nanoparticles forming an interconnected network held together by a polymer binder.  相似文献   

6.
Obtaining autoclave-level mechanical properties using in-situ consolidation of thermoplastic composites by Automated Tape Placement (ATP) is challenging. However, relatively recent availability of high quality ATP grade pre-preg material and tape heads equipped with more efficient heat sources (e.g. lasers) offers an opportunity to achieve improved mechanical properties and deposition rates. In the present study, carbon fibre–PEEK laminates, manufactured by laser-assisted ATP (LATP) and autoclave, are compared. Analysis of the through-thickness temperature distribution during LATP processing using thermocouples indicates that LATP cooling rates are extremely rapid and suggests full through-thickness melting of the pre-preg tape may not occur. Inadequate crystallinity, in conjunction with voids, compromised mechanical properties compared to autoclaved laminates but was beneficial in terms of the toughness of LATP laminates. Optimisation of pre-preg properties and processing parameters is required to realise the full potential of the LATP process in terms of mechanical properties, energy requirements, cost and deposition rates.  相似文献   

7.
This paper reports a new approach to enhance the through-thickness thermal conductivity of laminated carbon fabric reinforced composites by using nanoscale and microscale silver particles in combination to create heterogeneously structured continuous through-thickness thermal conducting paths. High conductivity of 6.62 W/(m K) with a 5.1 v% silver volume fraction can be achieved by incorporating these nanoscale and microscale silver particles in EWC-300X/Epon862 composite. Silver flakes were distributed within the inter-tow area, while nanoscale silver particles penetrated into the fiber tows. The combination of different sizes of silver fillers is able to effectively form continuous through-thickness conduction paths penetrating fiber tows and bridging the large inter-tow resin rich areas. Positive hybrid effects to thermal conductivity were found in IM7/EWC300X/sliver particle hybrid composites. In addition, microscale fillers in resin rich areas showed less impact on tensile performance than nanoscale particles applied directly on fiber surface.  相似文献   

8.
This paper presents a set of explicit analytical formulae, some of which have already appeared in the literature, that enable many of the effective elastic, thermal expansion and thermal conductivity properties for unidirectional composites to be calculated in terms of the fibre and matrix properties, and the fibre volume fraction. These properties are required as input values for another set of explicit analytical formulae that are presented, enabling the estimation of the effective elastic, thermal expansion and thermal conductivity properties of balanced symmetric angle-ply laminates. Effective through-thickness properties are calculated in addition to the in-plane properties so that a set of consistent values can be applied to finite element and boundary element analyses of structural elements involving the use of angle-ply laminates, provided that the ply layers in a structure are replaced by the calculated homogenised properties.Examples are given of the application of the various formulae to the prediction of the effective elastic and thermal properties of both CFRP and GRP angle ply laminates for various ply angles, using prescribed representative values of fibre and matrix properties. Zero-expansion laminates and the properties of [±45]s laminates are considered as special cases of interest.  相似文献   

9.
This paper presents a preliminary investigation on the effects of incorporating carbon nanotubes (CNT) into polyamide-6 (PA6) on mechanical, thermal properties and fire performance of woven glass reinforced CNT/PA6 nanocomposite laminates. The samples were characterized by tensile and flexural tests, thermal gravimetric analysis (TGA), heat distortion temperature (HDT) measurements, thermal conductivity and cone calorimeter tests. Incorporation of up to 2 wt% CNT in CNT/PA6/GF laminates improved the flexural stress of the laminates up to 36%, the thermal conductivity by approximately 42% and the ignition time and peak HRR time was delayed by approximately 31% and 118%, respectively.  相似文献   

10.
In this work, cobalt oxide nanoparticles decorated on graphene nanosheets was firstly synthesized by a facile hydrothermal method. The structure and morphology of the synthesized hybrids were characterized by X-ray diffraction, Raman spectrum and Transmission electron microscopy measurements. Subsequently, the hybrids were introduced into thermoplastic polyurethane matrix for acting as reinforcements. The hybrids were well dispersed in thermoplastic polyurethane and no obvious aggregation of graphene nanosheets was observed. The obtained nanocomposites exhibited significant improvements in thermal stability, flame retardancy, mechanical properties and reduced the fire toxicity effectively, compared with those of neat polyurethane. The obvious improvements of these properties were mainly attributed to the ‘‘tortuous path’’ effect of graphene nanosheets, catalytic char formation function of cobalt oxide–graphene hybrids and the synergism between the catalysis effect of cobalt oxide nanoparticles and the adsorption effect of graphene nanosheets.  相似文献   

11.
Aligned carbon nanotubes (CNTs) are implemented into alumina-fiber reinforced laminates, and enhanced mass-specific thermal and electrical conductivities are observed. Electrical conductivity enhancement is useful for electrostatic discharge and sensing applications, and is used here for both electromagnetic interference (EMI) shielding and deicing. CNTs were grown directly on individual fibers in woven cloth plies, and maintained their alignment during the polymer (epoxy) infiltration used to create laminates. Using multiple complementary methods, non-isotropic electrical and thermal conductivities of these hybrid composites were thoroughly characterized as a function of CNT volume/mass fraction. DC and AC electrical conductivity measurements demonstrate high electrical conductivity of >100 S/m (at 3% volume fraction, ∼1.5% weight fraction, of CNTs) that can be used for multifunctional applications such as de-icing and electromagnetic shielding. The thermal conductivity enhancement (∼1 W/m K) suggests that carbon-fiber based laminates can significantly benefit from aligned CNTs. Application of such new nano-engineered, multi-scale, multi-functional CNT composites can be extended to system health monitoring with electrical or thermal resistance change induced by damage, fire-resistant structures among other multifunctional attributes.  相似文献   

12.
Review of z-pinned composite laminates   总被引:4,自引:0,他引:4  
A.P. Mouritz   《Composites Part A》2007,38(12):2383-2397
This paper reviews published research into polymer composite laminates reinforced in the through-thickness direction with z-pins. Research into the manufacture, microstructure, delamination resistance, damage tolerance, joint strength and mechanical properties of z-pinned composites is described. Benefits of reinforcing composites with z-pins are assessed, including improvements to the delamination toughness, impact damage resistance, post-impact damage tolerance and through-thickness properties. Improvements to the failure strength of bonded and bearing joints due to z-pinning are also examined. The paper also reviews research into the adverse effects of z-pins on the in-plane mechanical properties, which includes reduced elastic modulus, strength and fatigue performance. Mechanisms responsible for the reduction to the in-plane properties are discussed, and techniques to minimise the adverse effect of z-pins are described. The benefits and drawbacks of z-pinning on the interlaminar toughness, damage tolerance and in-plane mechanical properties are compared against other common types of through-thickness reinforcement for composites, such as 3D weaving and stitching. Gaps in our understanding and unresolved research problems with z-pinned composites are identified to provide a road map for future research into these materials.  相似文献   

13.
In this article, transparent Al doped ZnO (AZO)/epoxy composite, as glass thermal insulation coating, was prepared by incorporating AZO nanoparticles into a transparent epoxy matrix. First, the as-synthesized AZO nanoparticles by the polymer pyrolysis method were characterized and the effect of Al doping content on the electrical conductivity of AZO nanoparticles was investigated. The results reveal that the AZO nanoparticles doped with 6 mol% Al obtained from calcination at 600 °C show the optimal electrical conductivity. The effects of AZO content on the optical and thermal insulation property of AZO/epoxy coating were also studied. It is shown that the AZO/epoxy composite coating with 0.5 wt% AZO possesses excellent optical properties, i.e. visible light transmittance above 50% and shading coefficient of 0.45 are simultaneously achieved. In addition, the large temperature difference between the chambers coated respectively with the AZO/epoxy coated glasses and the common glass indicates that the prepared AZO/epoxy coating has an excellent thermal insulation property.  相似文献   

14.
Research on flexible thermal interface materials (TIMs) has shown that the interconnected network of graphene foam (GF) offers effective paths of heat transportation. In this work, a variant amount of multilayer graphene flakes (MGFs) was added into 0.2 vol% GF/polydimethylsiloxane (PDMS) composite. A remarkable synergistic effect between MGF and GF in improving thermal conductivity of polymer composites is achieved. With 2.7 vol% MGFs, the thermal conductivity of MGF/GF/PDMS composite reaches 1.08 W m−1 K−1, which is 80%, 184% and 440% higher than that of 2.7 vol% MGF/PDMS, GF/PDMS composites and pure PDMS, respectively. The MGF/GF/PDMS composite also shows superior thermal stability. The addition of MGFs and GF decreases slightly the elongation at break, but observably increases the Young’s modulus and tensile strength of composites compared with pure PDMS. The good performance of MGF/GF/PDMS composite makes it a good TIM for possible application in thermal management of electronics.  相似文献   

15.
The objective of this study is to compare the mechanical and water absorption properties of kenaf (Hibiscus cannabinus L.) fibre reinforced laminates made of three different resin systems. The use of different resin systems is considered so that potentially complex and expensive fibre treatments are avoided. The resin systems used include a polyester, a vinyl ester and an epoxy. Laminates of 15%, 22.5% and 30% fibre volume fraction were manufactured by resin transfer moulding. The laminates were tested for strength and modulus under tensile and flexural loading. Additionally, tests were carried out on laminates to determine the impact energy, impact strength and water absorption. The results revealed that properties were affected in markedly different ways by the resin system and the fibre volume fraction. Polyester laminates showed good modulus and impact properties, epoxy laminates displayed good strength values and vinyl ester laminates exhibited good water absorption characteristics. Scanning electron microscope studies show that epoxy laminates fail by fibre fracture, polyester laminates by fibre pull-out and vinyl ester laminates by a combination of the two. A comparison between kenaf and glass laminates revealed that the specific tensile and flexural moduli of both laminates are comparable at the volume fraction of 15%. However, glass laminates have much better specific properties than the kenaf laminates at high fibre volume fractions for all three resins used.  相似文献   

16.
The present paper tests experimentally the through-thickness electrical conductivity of carbon fiber-reinforced polymer (CFRP) composites laminates for aircraft applications. Two types of samples were prepared: Type A samples with carbon nanotubes (CNTs) and Type B samples without CNTs. During the electrical experiments, electrical currents of several mA were injected through the specimens. Electrical resistance was monitored simultaneously in order to deduce the changes in the through-the-thickness electrical conductivity caused by the addition of CNTs. Improvement of electrical conduction by two orders of magnitude was achieved through the addition of 1 wt% carbon nanotubes as compared to classic CFRP without CNTs. For moisture saturated samples, the influence of moisture absorption on such measures was found to be negligible.  相似文献   

17.
The thermal conductivity and thermal diffusivity of sisal-reinforced polyethylene (SRP), glass-reinforced polyethylene (GRP) and sisal/glass hybrid fibre-reinforced polyethylene (GSRP) has been evaluated at cryogenic to high temperature (120–350 K). It has been observed that the variation of thermal conductivity with temperature is almost the same for LDPE and SRP containing perpendicularly oriented sisal fibres. The difference between the values of thermal conductivity shown by LDPE and GRP is greater than that of SRP and LDPE. The enhanced thermal conductivity of glass fibre is due to the presence of Fe2+ ions in the glass fibres. The linear variation in thermal conductivity with fibre loading is explained with the help of a model suggested by Agari. The difference between the thermal conductivity properties in directions parallel and perpendicular to the applied flux is a maximum for SRP owing to the anisotropic nature of sisal fibre. The difference is marginal for GRP on account of its isotropic nature. The position of GSRP is found to be intermediate. It can been observed that the variation of thermal diffusivity with temperature is just opposite to that of thermal conductivity. This may be due to a reduction in the mean free path of phonons. An empirical equation is derived to explain the variation in thermal conductivity and thermal diffusivity with temperature.  相似文献   

18.
This work presents a novel approach to the functionalization of graphite nanoparticles. The technique provides a mechanism for covalent bonding between the filler and matrix, with minimal disruption to the sp2 hybridization of the pristine graphene sheet. Functionalization proceeded by covalently bonding an epoxy monomer to the surface of expanded graphite, via a coupling agent, such that the epoxy concentration was measured as approximately 4 wt.%. The impact of dispersing this material into an epoxy resin was evaluated with respect to the mechanical properties and electrical conductivity of the graphite–epoxy nanocomposite. At a loading as low as 0.5 wt.%, the electrical conductivity was increased by five orders of magnitude relative to the base resin. The material yield strength was increased by 30% and Young’s modulus by 50%. These results were realized without compromise to the resin toughness.  相似文献   

19.
The effects of small amount of organically modified Clay (Clay) in polyamide 6 (PA6) on fire performance and thermal mechanical properties of Clay/PA6/woven glass fibres (GF) laminates are investigated by cone calorimeter test, dynamic mechanical thermal analysis (DMTA), and heat distort temperature (HDT) measurement. The mechanical properties, such as tensile and flexural properties of Clay/PA6 composites and Clay/PA6/GF laminates were also measured. Up to 3 wt.% Clay in a Clay/PA6/GF laminate with fibre volume fraction of 30 vol.% delayed the ignition time and peak heat release rate (PHRR) time by 55% and 118%, respectively, even though the value of the PHRR or the HDT was not significantly affected. 2 wt.% Clay increased flexural modulus and strength of the Clay/PA6/GF laminate by 10% and 16%, respectively, but more Clay did not increase the mechanical properties accordingly. Small amount of Clay does not affect glass fibre dominated properties, such as HDT, but do affect matrix dominated properties, and significantly affect the fire performance in terms of delaying ignition time and PHRR time. Optimization of laminate making process could benefit from additions of more Clay, therefore further improve fire performance and enhance mechanical properties.  相似文献   

20.
We found that the optimized mixture of graphene and multilayer graphene, produced by the high-yield inexpensive liquid-phase-exfoliation technique, can lead to an extremely strong enhancement of the cross-plane thermal conductivity K of the composite. The "laser flash" measurements revealed a record-high enhancement of K by 2300% in the graphene-based polymer at the filler loading fraction f = 10 vol %. It was determined that the relatively high concentration of the single-layer and bilayer graphene flakes (~10-15%) present simultaneously with the thicker multilayers of large lateral size (~1 μm) were essential for the observed unusual K enhancement. The thermal conductivity of the commercial thermal grease was increased from an initial value of ~5.8 W/mK to K = 14 W/mK at the small loading f = 2%, which preserved all mechanical properties of the hybrid. Our modeling results suggest that graphene-multilayer graphene nanocomposite used as the thermal interface material outperforms those with carbon nanotubes or metal nanoparticles owing to graphene's aspect ratio and lower Kapitza resistance at the graphene-matrix interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号