首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies the electrical and mechanical responses of cracked carbon nanotube (CNT)-based polymer composites. Tensile tests were performed on single-edge cracked plate specimens of the nanocomposites at room temperature and liquid nitrogen temperature (77 K), and the electrical resistance change of the specimens was monitored. An analytical model based on the electrical conduction mechanism of CNT-based composites was also developed to predict the resistance change resulted from crack propagation. The crack induced resistance change was calculated, and a comparison of the analytical predictions against the experimental data was made to validate the applicability of the model. In addition, the fracture properties of the nanocomposites were assessed in terms of the J-integrals using an elastic-plastic finite element analysis.  相似文献   

2.
When nickel nanostrands (NiNs) are embedded inside of highly flexible silicone, the silicone becomes an extremely piezoresistive sensor capable of measuring a large dynamic range of strains. These sensors experience an increase in conductance of several orders of magnitude when strained to 40% elongation. It has been hypothesized that this effect stems from a net change in average junction distance between the conductive particles when the overall material is strained. The quantum tunneling resistance across these gaps is highly sensitive to junction distance, resulting in the immense piezoresistive effect. In this paper, the average junction distance is monitored using dielectric spectroscopy while the material is strained. By incorporating new barrier height measurements of the base silicone material from a nanoindentation experiment, this experiment validates previous assumptions that, on average, the junctions between NiNs decrease while the sample is strained, instigating the large piezoresistive effect. The nature of the material’s response to strain is explored and discussed.  相似文献   

3.
Carbon nanotubes (CNTs) are an excellent candidate for the reinforcement of composite materials owing to their distinctive mechanical and electrical properties. Reticulate carbon nanotubes (R-CNTs) with a 2D or 3D configuration have been manufactured in which nonwoven connected CNTs are homogeneously distributed and connected with each other. A composite reinforced by R-CNTs can be fabricated by infiltrating a polymer into the R-CNT structure, which overcomes the inherent disadvantages of the lack of weaving of the CNTs and the low strength of the interface between CNTs and the polymer. In this paper, a 2D plane strain model of a R-CNT composite is presented to investigate its micro-deformation and effective stiffness. Using the two-scale expansion method, the effective stiffness coefficients and Young’s modulus are determined. The influences of microstructural parameters on the micro-deformation and effective stiffness of the R-CNT composite are studied to aid the design of new composites with optimal properties. It is shown that R-CNT composites have a strong microstructure-dependence and better effective mechanical properties than other CNT composites.  相似文献   

4.
Polyimide (PI) composites containing one-dimensional SiC nanowires grown on two-dimensional graphene sheets (1D–2D SiCNWs-GSs) hybrid fillers were successfully prepared. The PI/SiCNWs-GSs composites synchronously exhibited high thermal conductivity and retained electrical insulation. Moreover, the heat conducting properties of PI/SiCNWs-GSs films present well reproducibility within the temperature range from 25 to 175 °C. The maximum value of thermal conductivity of PI composite is 0.577 W/mK with 7 wt% fillers loading, increased by 138% in comparison with that of the neat PI. The 1D SiC nanowires grown on the GSs surface prevent the GSs contacting with each other in the PI matrix to retain electrical insulation of PI composites. In addition, the storage modulus and Young’s modulus of PI composites are remarkably improved in comparison with that of the neat PI.  相似文献   

5.
The distribution of functional filler is known to have significant influence on various functionalities, yet, not been systematically investigated. Herein, we use a blends system based on PA12/PA6 containing SiC and low-temperature expandable graphite (LTEG) to study it. The effect of filler distribution in such blends on various functionalities including: thermal conductivity, electrical conductivity, and electromagnetic interference (EMI) shielding ability, has been systematically studied. Further study on altering filler distribution with polished PA6-LTEG and PA6-LTEG in different sizes reveals that, polished particle surface results in reduced electrical and thermal conductivity; and smaller particle size leads to enhanced electrical conductivity, thermal conductivity and EMI shielding ability. Finally, theoretical approach on thermal conductivity demonstrates that the system illustrates very effective contribution in thermal conductivity from large PA6-LTEG “filler” comparing to much smaller traditional fillers. Such study could provide a guideline for the processing of functional polymer composites.  相似文献   

6.
Graphene oxide (GO) was added to a polymer composites system consisting of surfactant-wrapped/doped polyaniline (PANI) and divinylbenzene (DVB). The nanocomposites were fabricated by a simple blending, ultrasonic dispersion and curing process. The new composites show higher conductivity (0.02–9.8 S/cm) than the other reported polymer system filled with PANI (10−9–10−1 S/cm). With only 0.45 wt% loading of GO, at least 29% enhancement in electric conductivity and 29.8% increase in bending modulus of the composites were gained. Besides, thermal stability of the composites was also improved. UV–Vis spectroscopy, X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) revealed that addition of GO improves the dispersion of PANI in the polymer composite, which is the key to realize high conductivity.  相似文献   

7.
The microstructure, mechanical strength, dielectric properties, Doppler broadening measurements and positron life time studies of the composites containing multi walled carbon nanotubes (MWCNTs) and natural rubber (NR) are investigated. The uniform distribution of MWCNTs in the elastomer medium is studied by Raman spectroscopy and the electron microscopy images show the composite’s internal microstructure. Free volume sizes and interstitial mesopore sizes of the nanocomposites are determined by positron annihilation lifetime spectroscopy (PALS). PALS investigates the influence of the nanotubes in regulating the interphase nanoscale character. Strong interfacial interaction causes an apparent reduction of the free-volume fraction of NR probably by depressing the formation of free-volume holes in the interfacial region. The mechanical percolation and percolation observed from the dielectric measurements are correlated with the life time values. It is established that the sub-nano level free volumes and nano level structure of the composites have significant roles in regulating the mechanical properties.  相似文献   

8.
Flexible conductive polymer nanocomposites based on silver nanowires (AgNWs) have been widely studied to develop the next generation of flexible electronics. However, AgNWs tend to aggregate in polymer matrix that usually results in high percolation threshold. In this study, nonconductive silica nanoparticles (nano-SiO2) were successfully co-assembled on AgNWs to form AgNWs/nano-SiO2 hybrids and waterborne polyurethane (WPU) conductive nanocomposites filled with the hybrids were prepared. The results show that the resistivity of WPU nanocomposites filled with AgNWs/nano-SiO2 hybrids decreased about 5000 times and the percolation threshold decreased from 10.6 vol% to 3.6 vol% due to AgNWs distribute more uniformly in WPU with the help of nano-SiO2. The further study to mechanism of interactions between AgNWs and nano-SiO2 suggest that the promotion of dispersion is attributed to hydrogen bonding and van der Waals force. The WPU nanocomposites embedded with AgNWs/nano-SiO2 hybrids present excellent mechanical adhesiveness, flexibility and thermal stability.  相似文献   

9.
The mechanical and electrical properties of single-walled carbon nanotube (SWCNT) reinforced poly(phenylene sulphide) (PPS) composites prepared by melt-extrusion have been evaluated. The wrapping of SWCNTs in polyetherimide (PEI) and the addition of inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles provided an effective method for dispersing the SWCNTs, leading to enhanced properties of the resulting hybrid composites. Mechanical tests demonstrated significant enhancements in stiffness, strength and toughness by the addition of both nanofillers, and the Young’s modulus of the hybrid composites was fairly well predicted by two-phase modelling. The electrical conductivity of PPS improved dramatically at low SWCNT content (0.1-0.5 wt%). At higher concentrations, the replacement of part of the SWCNTs with IF-WS2 maintained the level of conductivity of the composites. Overall, the hybrids possess superior performance than composites reinforced solely with wrapped or non-wrapped SWCNTs, and their properties can be tailored by modifying the SWCNT/IF-WS2 ratio.  相似文献   

10.
A polyether amine (M2070) was covalently grafted onto the surface of graphene nanosheets (GNS) decorated by zinc hydroxystannate boxes (ZHS) to obtain an organic hybrid material (GNS-ZHS-M2070) with solvent-free and liquid-like behavior. It was subsequently incorporated into epoxy resin (EP) to investigate the flame-retardant property. The GNS-ZHS-M2070, which was a homogeneous sticky fluid at room temperature without any solvent, could stably disperse in a broad spectrum of solvents. Most importantly, the GNS-ZHS-M2070/EP composites possessed superior flame-retardant performance, such as the lowest peak heat release rate and fire growth rate index values. Furthermore, it had been demonstrated that the superior flame-retardant performance of GNS-ZHS-M2070/EP should be ascribed to the excellent processability and good compatibility of GNS-ZHS-M2070 derived from the unique flowability and soft organic shell. All of these advantages along with the solvent-free nature of GNS-ZHS-M2070 provided a green, efficient and environment-friendly way to fabricate high flame-retardant performance composite materials.  相似文献   

11.
Review of the mechanical properties of carbon nanofiber/polymer composites   总被引:1,自引:0,他引:1  
In this paper, the mechanical properties of vapor grown carbon nanofiber (VGCNF)/polymer composites are reviewed. The paper starts with the structural and intrinsic mechanical properties of VGCNFs. Then the major factors (filler dispersion and distribution, filler aspect ratio, adhesion and interface between filler and polymer matrix) affecting the mechanical properties of VGCNF/polymer composites are presented. After that, VGCNF/polymer composite mechanical properties are discussed in terms of nanofibers dispersion and alignment, adhesion between the nanofiber and polymer matrix, and other factors. The influence of processing methods and processing conditions on the properties of VGCNF/polymer composite is also considered. At the end, the possible future challenges for VGCNF and VGCNF/polymer composites are highlighted.  相似文献   

12.
A microvascular network within a composite structure can significantly boost its performance. However, properties of microvascular network and host structure largely depend on the manufacturing method, used for vascularization. This paper presents a review on various manufacturing strategies that have been implemented so far to produce vascularized polymer composites. The ways by which polymer composites can be vascularized with isolated or interconnected networks are based on either by incorporating pre-made channels or removing pre-loaded solid performs from the cured laminates. Majority of the techniques were developed for healing and recovery of structural integrity after quasi-static fracture, but microvascular networks also showed promise for enhanced-damage visualization, self-cooling, and damage sensing applications. Each technique has its own merits and demerits but the manufacturing techniques that are not only compatible with current composite manufacturing, but also give the freedom to embed complex channels which can execute multi-functions synchronously still remains the main challenge.  相似文献   

13.
In this paper, a new and simple model is presented for tensile yield strength of polymer/clay nanocomposites assuming the plate-like shape of silicate layers. Moreover, the accuracy of Pukanszky model which is initially developed for polymer composites filled with quasi-spherical particles is improved for silicate layered nanocomposites based on the suggested model. Many nanocomposites are provided from valid literature to estimate the accuracy of the proposed models and to calculate “k1” and “B1” parameters in the suggested equation and improved Pukanszky model, respectively. Furthermore, the developed models are joined to approximate the critical values of parameters which show the strengthening of polymer nanocomposites by nanoclay platelets. The large efficiency of the proposed approaches is confirmed, when the experimental data are compared with the calculations.  相似文献   

14.
In this paper, we demonstrate a novel strategy for fabricating advanced polymer composites based on functionalized graphene oxide decorated with phosphorus-nitrogen-containing dendrimers (PND-GO). Both X-ray diffraction and transmission electron microscopy results show that reduced PND-GO uniformly disperses within polymer matrix and is exfoliated in polyurethane (PU) via in situ polymerization. Cone calorimetry results show that incorporating 2 wt% reduced PND-GO into PU decreases the peak heat release rate by 53% and prolongs the time to ignition by 28 s as compared with the PU bulk. Besides, the tensile strength and Young’s modulus are remarkably enhanced by about 2 times and 5 times, respectively.  相似文献   

15.
We review experimental and theoretical work on electrical percolation of carbon nanotubes (CNT) in polymer composites. We give a comprehensive survey of published data together with an attempt of systematization. Parameters like CNT type, synthesis method, treatment and dimensionality as well as polymer type and dispersion method are evaluated with respect to their impact on percolation threshold, scaling law exponent and maximum conductivity of the composite. Validity as well as limitations of commonly used statistical percolation theories are discussed, in particular with respect to the recently reported existence of a lower kinetic (allowing for re-aggregation) and a higher statistical percolation threshold.  相似文献   

16.
Polylactide reinforced with 3 wt% of organo-modified montmorillonite, 5 wt% of stearic acid-modified calcium carbonate nanoparticles, 15 wt% of cellulose fibers (PLA/MMT, PLA/NCC, PLA/CF) and hybrid composites containing 15 wt% of fibers in addition to montmorillonite (PLA/MMT/CF) or calcium carbonate (PLA/NCC/CF) were prepared and examined. The nanoparticles were dispersed in polylactide almost homogeneously; montmorillonite was exfoliated during processing. Tg of polylactide remained unaffected but its cold crystallization was enhanced; the cold-crystallization behavior of the hybrid composites was dominated by nanofillers nucleating ability. The fibers and calcium carbonate decreased whereas exfoliated montmorillonite improved the thermal stability of the materials. Polylactide, PLA/NCC and PLA/MMT exhibited ability to plastic deformation, although the latter the weakest. Tensile behavior of the hybrid composites was strongly influenced by the fibers and similar to that of PLA/CF. All the fillers increased the storage modulus below Tg; that of PLA/MMT/CF and PLA/NCC/CF was improved with respect to polylactide by 50% and 45%, respectively.  相似文献   

17.
The advent of graphene heralded by the recent studies on carbon based conducting polymer composites has been a motivation for the use of graphene as an electromagnetic interference (EMI) shielding material. One of the variants of graphene, graphene nanoribbon (GNR) shows remarkably different properties from graphene. The EMI shielding effectiveness of the composite material mainly depends on fillers’ intrinsic conductivity, dielectric constant and aspect ratio. We have synthesized graphene nanoribbon (GNR) – Polyaniline (PANI) – epoxy composite film for effective shielding material in the X-band frequency range of 8.2–12.4 (GHz). We have performed detailed studies of the EMI shielding effect and the performance of the composite and found that the composite shows ∼−40 dB shielding which is sufficient to shield more than 95% of the EM waves in X Band. We checked the shielding effectiveness of the composite film by varying the GNR percentage and the thickness of the film. The strength properties of the synthesized composited were also studied with a aim to have a material having both high strength and EMI shielding properties.  相似文献   

18.
Three models have been developed for predicting the dielectric permittivity of insulating composites with inclusions of different lengths (from nm and larger) and different shapes. Firstly, for approximately periodic materials, a finite element model based on a smallest repeating box method was used in order to mimic frameworks with fibres, crystals, clay platelets, foams and lamellar layers. The introduction of parameters for relative aspect ratio, overlap, rotation and packing density made the model very flexible while maintaining its simplicity. Secondly, a finite element composite model with oriented, randomly positioned particles of different shapes was constructed. Thirdly, an analytical relationship to approximate the effective permittivity of two- or three-phase insulators with brick-shaped inclusions was derived. For a wide range of volume fractions, permittivity ratios and packing conditions, this model gave solutions very close to corresponding finite element simulation data for lamellae, much closer than all the other analytical relationships found in the literature. Results obtained by simulation were in agreement with experimental data from the literature for composites of micrometre-sized hollow glass spheres in epoxy and nanocomposites of mica platelets in polyimide, provided that a third (interfacial) component was introduced.  相似文献   

19.
We investigated the electromagnetic interference shielding effectiveness (EMI SE) of composites consisting of an unsaturated polyester matrix containing woven glass or carbon fibers that had been coated with multiwalled carbon nanotubes (MWCNTs). Composite panels consisting of fiber fabrics with various combinations of fabric type and stacking sequence were fabricated. Their EMI SE was measured in the frequency range of 30 MHz–1.5 GHz. The underlying physics governing the EMI shielding mechanisms of the materials, namely, absorption, reflection, and multiple reflections, was investigated and used in analytical models to predict the EMI SE. Simulation and experimental results showed that the contributions of reflection and absorption to EMI shielding is enhanced by sufficient impedance mismatching, while multiple reflections have a negative effect. For a given amount of MWCNTs in the glass-fiber–reinforced composite, coating the outermost, instead of intermediate, glass fiber plies with MWCNTs was found to maximize the conductivity and SE.  相似文献   

20.
Superior electrical, thermal, and mechanical properties of carbon nanotubes (CNTs) have made them effective filler for multifunctional polymer nanocomposites (PNCs). In particular, electrically conductive PNCs filled with CNTs have been researched extensively. These studies aimed to increase the PNCs' electrical conductivity (σ) and to minimize the percolation thresholds (ϕc). In this work, we have developed an improved model to describe the CNT networks and thereby evaluate the PNCs' ϕc and σ. The new model accounts for the electrical conductance contributed by the continued CNT network across the boundary of adjacent representative volume elements. It more realistically represents the interconnectivity among CNTs and enhances the evaluation of the structure-to-property relationship of PNCs' σ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号