首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了更好地提高求解高维复杂优化问题的能力,提出一种动态自适应和声搜索(DSHS)算法。该算法采用正交试验来设计算法的初始化和声记忆库;利用多维动态自适应调整算子和单维和声微调算子相结合的策略进行和声创作;改进和声音调调解步长,从而增强算法的扰动能力,避免其陷入局部搜索。通过6个标准Benchmark函数测试表明,该算法在全局搜索能力、收敛速度和稳定性方面都有明显提高。  相似文献   

2.
针对麻雀搜索算法存在的迭代过程中种群多样性减少且容易陷入局部最优以及收敛速度慢等问题;提出混合策略改进的麻雀搜索算法(MSSSA)。利用Circle映射初始化麻雀个体位置;增加初始种群的多样性。结合蝴蝶优化算法(BOA)中蝴蝶飞行方式;改进发现者的位置更新策略;增强算法全局探索能力。采用逐维变异方法对个体位置进行扰动;提升算法跳出局部最优的能力。在仿真实验中与4种基本算法和5种改进算法基于10个基准测试函数进行比较并进行Wilcoxon秩和检验;结果表明所提算法具有更好的收敛性和求解精度;全局寻优能力得到大幅提升。  相似文献   

3.
为解决在临近全局最优条件下,原始麻雀搜索算法(sparrow search algorithm, SSA)存在种群多样性降低,局部开发能力薄弱导致不容易跳出局部最优点的问题,提出基于切线飞行的麻雀搜索算法(tangent flight sparrow search algorithm, tanSSA)。首先,使用自适应t分布策略改进发现者位置更新公式,可以提高麻雀个体的寻优能力,同时防止算法早熟。然后,利用切线搜索算法中切线飞行策略所具有的可以增强算法探索搜索空间能力,且能使算法跳出局部最优解的优势,在原始麻雀搜索算法中使用切线飞行扰动策略对最优解进行扰动。这两种策略相结合,可以有效提升tanSSA算法的勘探与开发性能。最后,使用12个标准基准测试函数,结合Wilcoxon秩和检验来测试验证tanSSA算法的优化性能,并与原始SSA算法、鲸鱼优化算法、粒子群优化算法以及自适应t分布SSA算法进行比较。实验证明,基于切线飞行的麻雀搜索算法的寻优能力和收敛速度都有显著提升。  相似文献   

4.
    
Recently, multimodal multiobjective optimization problems (MMOPs) have received increasing attention. Their goal is to find a Pareto front and as many equivalent Pareto optimal solutions as possible. Although some evolutionary algorithms for them have been proposed, they mainly focus on the convergence rate in the decision space while ignoring solutions diversity. In this paper, we propose a new multiobjective fireworks algorithm for them, which is able to balance exploitation and exploration in the decision space. We first extend a latest single-objective fireworks algorithm to handle MMOPs. Then we make improvements by incorporating an adaptive strategy and special archive guidance into it, where special archives are established for each firework, and two strategies (i.e., explosion and random strategies) are adaptively selected to update the positions of sparks generated by fireworks with the guidance of special archives. Finally, we compare the proposed algorithm with eight state-of-the-art multimodal multiobjective algorithms on all 22 MMOPs from CEC2019 and several imbalanced distance minimization problems. Experimental results show that the proposed algorithm is superior to compared algorithms in solving them. Also, its runtime is less than its peers’.   相似文献   

5.
    
Combinatorial optimization problems (COPs) are discrete problems arising from aerospace, bioinformatics, manufacturing, and other fields. One of the classic COPs is the scheduling problem. Moreover, these problems are usually multimodal optimization problems with a quantity of global and local optima. As a result, many search algorithms can easily become trapped into local optima. In this article, we propose a multi-center variable-scale search algorithm for solving both single-objective and multi-objective COPs. The algorithm consists of two distinct points. First, the multi-center strategy chooses several individuals with better performance as the only parents of the next generation, which means that there are a number of separate searching areas around the searching center. Second, the next generation of the population is produced by a variable-scale strategy with an exponential equation based on the searching center. The equation is designed to control the neighborhood scale, and adaptively realize the large-scale and small-scale searches at different search stages to balance the maintenance of diversity and convergence speed. In addition, an approach of adjusting centers is proposed concerning the number and distribution of centers for solving multi-objective COPs. Finally, the proposed algorithm is applied to three COPs, including the well-known flexible job shop scheduling problem, the unrelated parallel machine scheduling problem, and the test task scheduling problem. Both the single-objective optimization algorithm and the multi-objective optimization algorithm demonstrate competitive performance compared with existing methods.  相似文献   

6.
胡洁  范勤勤    王直欢 《智能系统学报》2021,16(4):774-784
为解决多模态多目标优化中种群多样性维持难和所得等价解数量不足问题,基于分区搜索和局部搜索,本研究提出一种融合分区和局部搜索的多模态多目标粒子群算法(multimodal multi-objective particle swarm optimization combing zoning search and local search,ZLS-SMPSO-MM)。在所提算法中,整个搜索空间被分割成多个子空间以维持种群多样性和降低搜索难度;然后,使用已有的自组织多模态多目标粒子群算法在每个子空间搜索等价解和挖掘邻域信息,并利用局部搜索能力较强的协方差矩阵自适应算法对有潜力的区域进行精细搜索。通过14个多模态多目标优化问题测试,并与其他5种知名算法进行比较;实验结果表明ZLS-SMPSO-MM在决策空间能够找到更多的等价解,且整体性能要好于所比较算法。  相似文献   

7.
    
This paper considers dynamic multi-objective machine scheduling problems in response to continuous arrival of new jobs, under the assumption that jobs can be rejected and job processing time is controllable. The operational cost and the cost of deviation from the baseline schedule need to be optimized simultaneously. To solve these dynamic scheduling problems, a directed search strategy (DSS) is introduced into the elitist non-dominated sorting genetic algorithm (NSGA-II) to enhance its capability of tracking changing optimums while maintaining fast convergence. The DSS consists of a population re-initialization mechanism (PRM) to be adopted upon the arrival of new jobs and an offspring generation mechanism (OGM) during evolutionary optimization. PRM re-initializes the population by repairing the non-dominated solutions obtained before the disturbances occur, modifying randomly generated solutions according to the structural properties, as well as randomly generating solutions. OGM generates offspring individuals by fine-tuning a few randomly selected individuals in the parent population, employing intermediate crossover in combination with Gaussian mutations to generate offspring, and using intermediate crossover together with a differential evolution based mutation operator. Both PRM and OGM aim to strike a good balance between exploration and exploitation in solving the dynamic multi-objective scheduling problem. Comparative studies are performed on a variety of problem instances of different sizes and with different changing dynamics. Experimental results demonstrate that the proposed DSS is effective in handling the dynamic scheduling problems under investigation.  相似文献   

8.
李晓平  杜波  王贤文 《控制与决策》2023,38(12):3327-3335
针对帝王蝶算法多样性退化、易陷入局部最优导致寻优精度不高的问题,提出一种基于非线性云化的自适应帝王蝶算法(NCSMBO).深入探究帝王蝶算法的进化机制,指出其本质为网格式搜索算法;在迁移和调整算子中,采用正向正态云发生器对父代帝王蝶个体执行非线性云化操作,增加候选解的数量,提高局部开发能力;对云化后的后代个体引入贪婪策略,增强算法的可行性;为从发生概率上对突变进行控制,进一步给出双圆正切形式的自适应调整率.在12个不同特征基准测试函数上对包含NCSMBO在内的7种优化算法进行综合评估,以及对两类数学规划问题求解验证,实验验证结果均表明所提算法具有更高的收敛精度和稳定性.  相似文献   

9.
吴坤安  严宣辉  陈振兴  白猛 《计算机应用》2014,34(10):2874-2879
在进化多目标优化算法中,种群的多样性、对目标空间的搜索能力及算法的鲁棒性直接影响算法的收敛能力和解集的分散性。针对这些问题,提出了一种混合分散搜索的进化多目标优化算法(SSMOEA)。SSMOEA在混合分散搜索算法架构的同时,重新设计其多样性的选取策略,并引入协同进化机制。此外,为了提高算法的自适应性和鲁棒性,采用了一种新颖的自适应多交叉算子选择方法。SSMOEA与经典的多目标进化算法SPEA2、NSGA-Ⅱ和MOEA/D在12个基准测试函数上的对比结果表明,SSMOEA不仅在求得的Pareto最优解集的宽广性、均匀性和逼近性上有明显优势,而且算法的鲁棒性也有明显的提高。  相似文献   

10.
李明则  向阳  张文华 《计算机工程》2014,(1):153-157,166
随着隐写分析技术的发展,新的特征提取算法不断出现,但目前还没有一种较好的通用特征能对JPEG图像进行有效的隐写分析。针对上述问题,提出一种从多域空间提取特征的通用隐写分析算法。采用残差共生矩阵与直方图统计函数计算DCT域、空域、小波域各域系数(像素)之间的依赖性关系,并结合校准方式从中提取特征。对多样性特征维数高的问题,采用前向选择与穷举结合的方法对其降维,以提高分类精度与节约分类时间。对4种典型的JPEG隐写算法在小嵌入率下进行实验,结果表明,与已有的检测方法相比,多域空间提取的多样性特征检测准确率能提高2%以上,适应性更广。  相似文献   

11.
对点目标的图像变化检测,现有的变化检测技术结果往往存在着虚警过大的问题。通过深入分析多个传统的变化检测方法的特点,利用各方法的互补性,提出了利用Laplacian Eigenmap对多个方法检测结果进行降维分类的优化技术。首先把各个方法对某个像素的检测结果用向量的形式进行表示,然后利用Laplacian Eigenmap对整个图像的数据流形在低维空间展开,最后利用模糊分类进行分类。该技术有两个优势:(1)在保证现有较高检测率的同时,大大降低了结果的虚警率;(2)它极大地降低了在传统方法中由于人为阈值取舍带来的偏差风险。但该技术的不足之处是增加了计算量。  相似文献   

12.
针对差分进化算法处理复杂优化问题时存在后期收敛速度变慢、收敛精度不高和参数设置困难的问题,提出了一种基于动态自适应策略的改进差分进化算法(dn-DADE)。首先,新的变异策略DE/current-to-dnbest/1利用当前种群中的精英解引导有效的搜索方向来动态调整可选的精英解,使其在进化后期趋于全局最优解。其次,分别设计了缩放因子和交叉因子的自适应更新策略,使两者在搜索的不同阶段自适应变化,以弥补差分进化算法对参数敏感的不足,进一步提高算法的稳定性和鲁棒性。对14个benchmark函数进行了测试并与多种先进DE改进算法进行了比较,结果显示,dn-DADE算法具有较高的求解精度,收敛速度快,寻优性能显著。  相似文献   

13.
业务流程、信息基础设施等的变化会造成当前角色定义出现偏差,使得组织易遭受内部威胁.基于定时、合理改变组织内部角色集合的防御思路,提出了一种角色动态调整算法(Role Dynamic Aj usting,RDA).该算法定义了带有调整参数的目标函数,以平衡考虑用户权限实际使用数据以及系统管理员专家知识;基于启发式搜索策略...  相似文献   

14.
刘景森  袁蒙蒙  左方 《控制与决策》2021,36(9):2152-2160
为了进一步改善基本樽海鞘群算法容易陷入局部最优、寻优精度有时不高、求解结果不太稳定的不足,提出一种面向全局搜索的自适应领导者樽海鞘群算法.首先,在领导者位置更新公式中引入上一代樽海鞘群位置,增强全局搜索的充分性,有效避免算法陷入局部极值;然后,在领导者位置更新公式中加入惯性权重,并在全局和局部搜索的选择上引入领导者-跟...  相似文献   

15.
    
Most of the real world problems have dynamic characteristics, where one or more elements of the underlying model for a given problem including the objective, constraints or even environmental parameters may change over time. Hyper-heuristics are problem-independent meta-heuristic techniques that are automating the process of selecting and generating multiple low-level heuristics to solve static combinatorial optimization problems. In this paper, we present a novel hybrid strategy for applicability of hyper-heuristic techniques on dynamic environments by integrating them with the memory/search algorithm. The memory/search algorithm is an important evolutionary technique that have applied on various dynamic optimization problems. We validate performance of our method by considering both the dynamic generalized assignment problem and the moving peaks benchmark. The former problem is extended from the generalized assignment problem by changing resource consumptions, capacity constraints and costs of jobs over time; and the latter one is a well-known synthetic problem that generates and updates a multidimensional landscape consisting of several peaks. Experimental evaluation performed on various instances of the given two problems validates that our hyper-heuristic integrated framework significantly outperforms the memory/search algorithm.  相似文献   

16.
回溯搜索算法(Backtracking Search Optimization Algorithm,BSA)是一种基于种群的进化算法。该算法有良好的全局搜索性能,但存在收敛速度慢的缺点。针对这一缺点,提出了自适应变异尺度系数和混合选择的改进的回溯搜索算法。改进的变异尺度系数是基于Metropolis准则提出的,它的总体趋势自适应减小。改进的选择策略是整体[q]%择优法与锦标赛选择法的混合选择机制,在选择过程中使一定比例的优秀个体优先进入下一代,剩余个体对位选取适应度较高的个体。对5个复杂的约束优化问题进行仿真实验,得到的实验结果分别与原算法和众多同类算法进行了比较,实验结果表明了改进算法的有效性和良好竞争力。  相似文献   

17.
关于优化粒子群算法问题,针对标准粒子群算法前期收敛速度过快,后期容易陷入局部最优解的问题,提出一种种群多样性模糊控制的粒子群算法。为了控制种群多样性的变化,提高算法跳出局部最优解的性能,在算法中加入模糊控制器和位置跳变策略,通过控制参数的变化来控制粒子的速度、位置和种群多样性的变化,使算法从全局探测平稳过渡到局部开采。仿真结果表明,改进算法能有效避免陷入局部最优解,且对高维函数优化时效果更为明显,是一种高效的优化算法。  相似文献   

18.
针对多模态复杂优化问题,提出了一种基于和声搜索和差分进化的混合优化算法:HHSDE算法。在不同的进化阶段,HHSDE算法依据累积加权更新成功率来自适应地选择和声算法或差分算法作为更新下一代种群的方式,并改进了差分算法的变异策略来平衡差分算法的全局与局部搜索能力。通过对10个多模态Benchmark函数进行测试,利用Wilcoxon秩和检验对不同算法的计算结果进行比较,结果表明HHSDE算法具有收敛速度快,求解精度高,稳定性好等优势。  相似文献   

19.
为了提高布谷鸟搜索算法求解函数优化问题的求精能力和收敛速度,提出了一种基于自适应机制的改进算法.自适应机制用于控制缩放因子和发现概率,以提高种群的多样性,避免早熟,从而使更多的个体参与演化,达到提高求精能力和收敛速度的效果.仿真实验结果表明,与标准的布谷鸟搜索算法相比,基于自适应机制缩放因子的改进算法(rCS)和基于自适应机制发现概率的改进算法(paCS)在求精能力和收敛速度上都有明显的提高;同时具有自适应缩放因子和自适应发现概率的改进算法(iCS)比rCS和paCS具有更优的求精能力和收敛速度.  相似文献   

20.
This paper proposes a novel hybrid approach based on particle swarm optimization and local search, named PSOLS, for dynamic optimization problems. In the proposed approach, a swarm of particles with fuzzy social-only model is frequently applied to estimate the location of the peaks in the problem landscape. Upon convergence of the swarm to previously undetected positions in the search space, a local search agent (LSA) is created to exploit the respective region. Moreover, a density control mechanism is introduced to prevent too many LSAs crowding in the search space. Three adaptations to the basic approach are then proposed to manage the function evaluations in the way that are mostly allocated to the most promising areas of the search space. The first adapted algorithm, called HPSOLS, is aimed at improving PSOLS by stopping the local search in LSAs that are not contributing much to the search process. The second adapted, algorithm called CPSOLS, is a competitive algorithm which allocates extra function evaluations to the best performing LSA. The third adapted algorithm, called CHPSOLS, combines the fundamental ideas of HPSOLS and CPSOLS in a single algorithm. An extensive set of experiments is conducted on a variety of dynamic environments, generated by the moving peaks benchmark, to evaluate the performance of the proposed approach. Results are also compared with those of other state-of-the-art algorithms from the literature. The experimental results indicate the superiority of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号