首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 239 毫秒
1.
All-cellulose composite films reinforced with ramie fibers were prepared from aqueous NaOH–urea solvent system via a simple pathway. The structure and physical properties of the modified ramie fibers and composite films were characterized by scanning electron microscope (SEM), wide angle X-ray diffraction (WAXD), Fourier transform infrared spectrometer, ultraviolet–visible spectroscope, thermogravimetry, biodegradation tests and tensile tests. The results revealed that a good compatibility existed between the modified ramie fibers and cellulose matrix. The all-cellulose composite films exhibited high tensile strength, good optical transmittance, thermal stability, and biodegradability. The tensile strength and elastic modulus of the composite films increased with an increase of the ramie fibers. These high-strength biodegradable films prepared by a “green” pathway have potential applications as packaging materials and biomaterials.  相似文献   

2.
The aim of the present study is to investigate and compare the mechanical and thermal properties of raw jute and banana fiber reinforced epoxy hybrid composites. To improve the mechanical properties, jute fiber was hybridized with banana fiber. The jute and banana fibers were prepared with various weight ratios (100/0, 75/25, 50/50, 25/75 and 0/100) and then incorporated into the epoxy matrix by moulding technique to form composites. The tensile, flexural, impact, thermal and water absorption tests were carried out using hybrid composite samples. This study shows that addition of banana fiber in jute/epoxy composites of up to 50% by weight results in increasing the mechanical and thermal properties and decreasing the moisture absorption property. Morphological analysis was carried out to observe fracture behavior and fiber pull-out of the samples using scanning electron microscope.  相似文献   

3.
An organomodified surface nanoclay reinforced epoxy glass-fiber composite is evaluated for properties of mechanical strength, stiffness, ductility and fatigue life, and compared with the pristine or epoxy glass-fiber composite material not reinforced with nanoclays. The results from monotonic tensile tests of the nanoclay reinforced composite material at 60 °C in air showed an average 11.7% improvement in the ultimate tensile strength, 10.6% improvement in tensile modulus, and 10.5% improvement in tensile ductility vs. these mechanical properties obtained for the pristine material. From tension–tension fatigue tests at a stress-ratio = +0.9 and at 60 °C in air, the nanoclay reinforced composite had a 7.9% greater fatigue strength and a fatigue life over a decade longer or 1000% greater than the pristine composite when extrapolated to 109 cycles or a simulated 10-year cyclic life. Electron microscopy and Raman spectroscopy of the fracture and failure modes of the test specimens were used to support the results and conclusions. This nanocomposite could be used as a new and improved material for repair or rehabilitation of external surface wall corrosion or physical damage on piping and vessels found in petrochemical process plants and facilities to extend their operational life.  相似文献   

4.
Novel green composites were successfully fabricated by incorporating agro-residues as corn straw (CS), soy stalk (SS) and wheat straw (WS) into the bacterial polyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PHBV, by melt mixing technique. Effects of these biomass fibers on mechanical, thermal, and dynamic mechanical properties of PHBV were investigated. A comparative study of biomass fiber-reinforced polypropylene composite systems was performed. The tensile and storage modulus of PHBV was improved by maximum 256% and 308% with the reinforcement of 30 wt.% agricultural byproducts to it. For equal amounts of (30%) biomass fibers, tensile and flexural modulii of PHBV composites showed much higher values than corresponding PP composites. Alkali treatment of wheat straw fibers enhanced strain @ break and impact strength of PHBV composites by ∼35%, hardly increasing strength and modulus compared to their untreated counterparts. DMA studies indicated better interfacial interaction of PHBV with the biomass fibers than PP. Scanning electron microscopy (SEM), used to study the morphology of composites, also revealed similar outcomes.  相似文献   

5.
The development and thermo-mechanical characterization of a novel green composite lamina, made of PolyLactic Acid (PLA) reinforced with a natural fabric extracted from Manicaria Saccifera palm, are presented. The composite was characterized by thermal-analysis (TGA), tensile, flexural, and izod impact tests, and scanning electronic microscopy (SEM). TGA analysis showed that the degradation process of the composite started earlier than that of neat PLA due to the lower thermal stability of the fabric. The mechanical tests showed that PLA properties were improved. The tensile strength, elastic modulus and impact resistance were improved by 26%, 51% and 56% respectively. Good dispersion and mechanical interlocking of PLA into the fabric were seen by SEM explaining the improvements of the mechanical properties of the composite. In summary, the good tensile properties and the excellent energy absorption capabilities of the MF/PLA composite lamina show great potential of Manicaria fabric as reinforcement in green composites.  相似文献   

6.
Layered zinc hydroxide salts (zinc LHS) were intercalated with anionic orange azo dyes, namely methyl orange (MO) and orange II (OII), and co-intercalated with hydrated chloride anions. After characterization by X-ray diffraction (XRD), thermal analysis (TGA/DTA), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS), the materials were used as fillers for poly(vinyl alcohol) (PVA). Colorful transparent films were obtained by wet casting, revealing good dispersion of the material into the polymer. In the case of zinc LHS/OII, PVA was intercalated between the zinc LHS layers. Evaluation of the mechanical properties of the PVA composite films revealed that the layered colorful materials were able to increase the mechanical properties of the PVA films only when the films were stored under lower relative humidity. As expected, films with higher water content displayed reduced tensile strength and modulus because of the plasticizing effect of water. As for the films stored at 43% relative humidity, more pronounced improvement of modulus was observed for 1 and 4% zinc LHS/OII, and enhanced tensile strength was achieved for 0.5 and 1% zinc LHS/OII. This effect can be attributed to better dispersion of the layered filler and its better adhesion to the PVA matrix.  相似文献   

7.
A metallic matrix composite, with AlSi9Cu3 matrix reinforced with 5% copper coated graphite (GrCu) was processed in semi solid state by centrifugal casting. This technique allows the uniform controlled distribution of the reinforcing material to provide improved tribological properties in certain area. The graphite particles were copper coated for a better embedding in the matrix. The microstructure evolution revealed compounds containing Mn, Si and Mg in the matrix alloy and the final composite and controlled distribution of the copper coated graphite as reinforcing material. The hardness measurement showed 48% improvement towards the matrix alloy and the Young modulus showed 27% improvement. The friction coefficient and wear rate obtained revealed a very good and promising behavior of the composite processed in semi solid state for ball bearings ring application.  相似文献   

8.
Nanocomposites of polyacrylonitrile (PAN) with reduced graphene oxide (rGO) were prepared using a solution mixing technique employing polyvinyl phenol (PVP) as a compatibilizer. The PVP can facilitate composite formation by interacting with both rGO and PAN via π-π and H-bonding respectively. Various amounts of rGO were used to prepare PAN nanocomposites. The cross-sectional morphology of the composite films shows a uniform dispersion of rGO sheets in the PAN matrix. The Fourier transform infrared (FT-IR) studies revealed that good interaction of the rGO/PVP hybrid with PAN. The wide angle x-ray diffraction (WAXS) study confirms that the rGO sheets were uniformely dispersed as individual sheets in the PAN matrix. Thermogravimetric analysis shows enhanced thermal stability of the composite compared to pure PAN. The tensile strength and elastic modulus of the nanocomposites increased with increasing rGO content. A 102% enhancement in tensile strength and a 62.9% enhancement in elastic modulus were observed in the nanocomposite with 5% rGO.  相似文献   

9.
Multi-walled carbon nanotubes (MWCNTs) were chemically functionalized to prepare thermoplastic polyurethane (PU) composites with enhanced properties. In order to achieve a high compatibility of functionalized MWCNTs with the PU matrix, polycaprolactone diol (PCL), as one of PU’s monomers, was selectively grafted on the surface of MWCNTs (MWCNT–PCL), while carboxylic acid groups functionalized MWCNTs (MWCNT–COOH) and raw MWCNTs served as control. Both MWCNT–COOH and MWCNT–PCL improved the dispersion of MWCNTs in the PU matrix and interfacial bonding between them at 1 wt% loading fraction. The MWCNT–PCL/PU composite showed the greatest extent of improvement, where the tensile strength and modulus were 51.2% and 33.5% higher than those of pure PU respectively, without sacrificing the elongation at break. The considerable improvement in both mechanical properties and thermal stability of MWCNT–PCL/PU composite should result from the homogeneous dispersion of MWCNT–PCL in the PU matrix and strong interfacial bonding between them.  相似文献   

10.
Diametral compression tests were performed on pultruded composite rods comprised of unidirectional glass or carbon fibers in a common matrix. During compression tests, acoustic emission (AE) activity was recorded and images were acquired from the sample for analysis by digital image correlation (DIC). In both composite systems, localized tensile strain developed in the transverse plane under the load platens prior to failure, producing non-linearity in the load–displacement curve and AE signals. In situ SEM diametral compression tests revealed the development of matrix microcracking and debonding in regions of localized strain, perpendicular to the tensile strain direction (parallel to the load axis). Comparison of linear finite element simulations and experimental results showed a deviation from linear elastic behavior in the load displacement curve. The apparent transverse modulus, in plane shear modulus, and transverse tensile strength of the GF rod was greater than that of the CF rod, and fracture surfaces indicated greater fiber/matrix adhesion in the GF system compared to the CF system. A mixed mode fracture surface showed that two failure modes were active – matrix tensile failure and matrix compression failure by shear near the loading edge.  相似文献   

11.
In this study, argon and air-plasma treatments were used to modify the surface of woodfibres under suitable treatment parameters to improve the compatibility between woodfibres and polypropylene (PP). Woodfibres and PP fibres were blended together to form a random mat, which was then vacuum hot-pressed into a preimpregnated composite sheet. The tensile strength and tensile modulus of the composite sheet improved to some extent after the plasma treatment. The storage modulus in the dynamic mechanical properties of woodfibre-PP composites also showed improvement after the treatment. Furthermore, scanning electron microscopy analyses revealed the improved morphologies of the fractured surfaces of the composites. Surface characterisation, by X-ray photoelectron spectroscopy, showed increases in oxygen/carbon ratios of woodfibres after treatment.  相似文献   

12.
To enhance the strength, ramie fibers aligned in vertical (V), horizontal (H) as well as both vertical and horizontal (X) directions were used to reinforce soy protein materials (SC), coded as VSC, HSC and XSC. The soy protein isolate was arylated with 2,2-diphenyl-2-hydroxyethanoic acid through the process of “dip-coating”, coded as SC-B. The SC and SC-B composite films were characterized by Fourier transform infrared spectra, scanning electron microscopy, thermogravimetric analysis, dynamic mechanical thermal analysis, and tensile testing. Substantial improvement in the water uptake (from 100% to 25%) and the increased modulus (from 125 to 942 MPa) of the VSC-B composite were observed. This could be attributed to the formation of phase separation induced hydrophobic microparticles of DPHM on the surface of the SC-B films upon arylation, leading to the hydrophobicity. The thermal stability of the arylated composites increased compared to non-arylated ones. The VSC-B materials exhibited the highest water resistance and mechanical properties compared to HSC-B and XSC-B. Therefore, the arylation of SPI and alignment of the ramie fibers in the composites played an important role in the improvement of mechanical properties. This work provided a novel idea to improve the water resistance and modulus by reinforcing the protein matrix with natural fibers.  相似文献   

13.
In the present investigation, dynamic mechanical analysis (DMA), thermo gravimetric analysis (TGA), tensile tests, fatigue tests and the single edge notch tensile (SENT) tests were performed on unfilled, 1, 2 and 3 wt.% vapor grown carbon nanofiber (CNF) filled SC-15 epoxy to identify the loading effect on thermal and mechanical properties of the composites. DMA studies revealed that filling the 3% carbon nanofiber into epoxy can produce 65% enhancement in storage modulus at room temperature and 6 °C increase in T g. However, TGA results show that thermal stability of composite is insensitive to the CNF content. Tensile tests were carried out at the strain rate range from 0.02 min−1 to 2 min−1. Results show that CNF/epoxy are strain rate sensitive materials, the modulus and tensile strength increased with increasing of strain rate. Experimental results also indicate that modulus of the nanophased epoxy increases continuously with increasing CNF content. But the 2% CNF infusion system exhibit maximum enhancement in tensile strength, fatigue performance and fracture toughness as compared with other system.  相似文献   

14.
The preparation and characterization of new nanocomposite films based on two acrylic emulsions, composed of random copolymers of butyl acrylate and methyl methacrylate, and bacterial cellulose is reported. The new composite materials were obtained through a simple and green approach by casting water-based suspensions of the acrylic emulsions and bacterial cellulose nanofibrils. The excellent compatibility between these matrices and the natural reinforcing fibers, observed by scanning electron microscopy (SEM), was reflected in the enhanced thermal and mechanical properties of the ensuing composites. Thus, an increase of around 30 °C in the maximum degradation temperature was observed for a 10% content of bacterial cellulose. The new composites showed glass–rubber transition temperature profiles comparable to those of the pristine matrices, as shown by DMA, and increasing elastic moduli with increasing the bacterial cellulose content. The tensile tests revealed a substantial increase in Young’s modulus and tensile strength and a corresponding decrease in elongation at break with increasing bacterial cellulose load.  相似文献   

15.
Green composites were prepared with polypropylene matrix and 20 wt.% spent coffee ground (SCG) powder for uses as a wood plastic composite (WPC). The effects of hydrophobic treatment with palmitoyl chloride on SCG powder is compared with conventional surface treatment based on silanization with (3-glycidyloxypropyl) trimethoxysilane and the use of a maleated copolymer compatibilizer (polypropylene-graft-maleic anhydride, PP-g-MA) in terms of mechanical properties, morphology, thermal properties and water uptake. Composites were previously mixed in a twin-screw co-rotating extruder and subsequently subjected to injection moulding. The comparative effect of the different surface treatments and or compatibilizers on mechanical performance was studied by flexural, impact tests and dynamic mechanical thermal analysis (DMTA-torsion); in addition, the stabilizing effect of SCG was revealed by differential scanning calorimetry (DSC) and thermogravymetric analysis (TGA). As one of the main drawbacks of wood plastic composites and natural fibre reinforced plastics is the moisture gain, water uptake tests were carried out in order to quantify the effectiveness of the hydrophobization process with palmitoyl chloride. Results show a slight increase in flexural modulus for composites with both untreated and treated/compatibilized SCG powder (20 wt.%). As expected, thermal stability is improved as indicated by an increase of more than 8% in the onset degradation temperature by DSC if compared to unfilled polypropylene. Fracture analysis by scanning electron microscopy (SEM) shows better particle dispersion for PP-SCG composites with hydrophobized SCG with palmitoyl chloride treatment; in addition a remarkable decrease in water uptake is observed for composites with hydrophobized SCG.  相似文献   

16.
Starch-based biocomposites reinforced with jute (micro-sized fiber) and bacterial cellulose (BC) (nano-sized fiber) were prepared by film casting. Reinforcement in the composites is essentially influenced by fiber nature, and amount of loading. The optimum amount of fiber loading for jute and bacterial cellulose in each composite system are 60 wt% and 50 wt% (of starch weight), respectively. Mechanical properties are largely improved due to the strong hydrogen interaction between the starch matrix and cellulose fiber together with good fiber dispersion and impregnation in these composites revealed by SEM. The composites reinforced with 40 wt% or higher bacterial cellulose contents have markedly superior mechanical properties than those reinforced with jute. Young’s modulus and tensile strength of the optimum 50 wt% bacterial cellulose reinforced composite averaged 2.6 GPa and 58 MPa, respectively. These values are 106-fold and 20-fold more than the pure starch/glycerol film. DMTA revealed that the presence of bacterial cellulose (with optimum loading) significantly enhanced the storage modulus and glass transition temperature of the composite, with a 35 °C increment. Thermal degradation of the bacterial cellulose component occurred at higher temperatures implying improved thermal stability. The composites reinforced with bacterial cellulose also had much better water resistance than those associated with jute. In addition, even at high fiber loading, the composites reinforced by bacterial cellulose clearly retain an exceptional level of optical transparency owing to the effect of the nano-sized fibers and also good interfacial bonding between the matrix and bacterial cellulose.  相似文献   

17.
The mechanical, thermal and electrical properties of modified AlN/polyetherimide (PEI) composites were investigated. It revealed that the surface of AlN modified by silane could effectively increase the adhesion with matrix, which was beneficial for AlN to reinforce the polyetherimide matrix. After silane modification, the AlN showed good dispersion and wetibility in the polyetherimide matrix and imparted excellent mechanical, electrical and thermal properties. The tensile strength, modulus, electrical and thermal stability were improved with the increasing of AlN content. The tensile strength of AlN/PEI composites increased by 27% when 12.6 vol.% AlN was added to neat polyetherimide. The thermal conductivity of the 57.4 vol.% AlN/PEI composites increased three times compared with neat polyetherimide. Test results indicate that the silane grafted AlN incorporated into the polyetehetimide matrix effectively enhance the thermal stability, thermal conductivity and mechanical properties of the polyetherimide composites.  相似文献   

18.
Blends of a thermotropic liquid crystalline polymer (LCP) with polypropylene (PP) were injection moulded. The LCP exhibited a higher viscosity than that of PP. Static and dynamic mechanical measurements, Izod impact tests, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) were performed on these blends. The static tensile tests show that the tensile modulus and strength of PP are improved with the addition of LCP. The improvement in mechanical properties is associated with the formation of LCP fibrils as evidenced by SEM observations. Dynamic studies on these blends show an increase in the storage modulus but a decrease in loss factor with the addition of LCP. Furthermore, TGA measurements show that the thermal stability of PP is improved substantially with the addition of LCP.  相似文献   

19.
In this study carbon nanotubes (CNTs) were grown on carbon fibers to enhance the in-plane and out-of-plane properties of fiber reinforced polymer composites (FRPs). A relatively low temperature synthesis technique was utilized to directly grow CNTs over the carbon fibers. Several composites based on carbon fibers with different surface treatments (e.g. growing CNTs with different lengths and distribution patterns and coating the fibers with a thermal barrier coating (TBC) layer) were fabricated and characterized via on- and off-axis tensile tests. The on-axis tensile strength and ductility of the hybrid FRPs were improved by 11% and 35%, respectively, due to the presence of the TBC and the surface grown CNTs. This configuration also exhibited 16% improvement on the off-axis stiffness. Results suggest that certain CNT growth patterns and lengths are more pertinent than the other surface treatments to achieve superior mechanical properties.  相似文献   

20.
Biobased nanocomposites based on cellulose nanowhiskers (CNWs) and cellulose acetate butyrate (CAB) were prepared using solvent exchange of CNWs to ethanol by sol-gel method followed by casting. The strong flow birefringence of the solutions indicated evenly dispersed cellulose nanowhiskers in the dissolved polymer CAB. Scanning electron microscopy of the nanocomposites confirmed well dispersed CNWs in the CAB matrix, which was further supported by the high transparency exhibited by the nanocomposites. The results of tensile tests indicated significant improvements in the mechanical properties of nanocomposites by increasing the CNWs contents. The Young’s modulus and strength increased 83% and 70%, respectively, for nanocomposites with 12 wt% of CNW, and the strain was not suppressed compared to the neat CAB. The dynamic mechanical thermal analysis demonstrated significant improvement in storage modulus with increasing CNW contents, and the tan δ peak position was moved towards higher temperature when CNW was added. It is expected that solvent exchange by the sol-gel route followed by casting of nanocomposites from the same solvent will provide a promising route for obtaining cellulose nanocomposites with well dispersed CNW, leading to improved mechanical properties, even with low nanowhisker contents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号