首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用水玻璃作为激发剂,采用偏高岭土和矿渣作为固体前驱体,研究了不同水玻璃模数、不同碱当量和不同偏高岭土掺量对碱偏高岭土矿渣地聚合物水泥砂浆流动度、凝结时间、强度和粘度特性的影响,并基于牛顿内摩擦定律,推导了砂浆剪切应力与剪切速率的相关关系.结果 表明:碱偏高岭土矿渣水泥砂浆流动度和强度均随水玻璃模数和偏高岭土掺量增大而降低.凝结时间随偏高岭土掺量的增大而增加,随水玻璃模数增大逐渐增大.经过推导,发现碱偏高岭土矿渣水泥砂浆剪切应力与剪切速率呈线性关系.关系式中的屈服应力和塑性粘度均随偏高岭土掺量和水玻璃模数增大而增大.  相似文献   

2.
试验采用旋转黏度计测定了水泥-白云石粉浆体剪切应力和塑性黏度随剪切速率变化的规律,对所测浆体T-γ曲线采用Bingham流体模型进行拟合,得到浆体屈服应力和塑性黏度,采用Power Law流体模型拟合出浆体的流变指数,并用触变环面积表征浆体的触变性.研究结果表明:在0 ~ 30%掺量范围内,随白云石粉掺量的增大,水泥浆体的屈服应力、塑性黏度和触变性均逐渐增加;白云石粉细度对浆体屈服应力和塑性黏度影响较小.  相似文献   

3.
颗粒粒度分布对高固相含量氧化铝浆料流变性能的影响   总被引:5,自引:3,他引:5  
制备了低粘度、高固相含量氧化铝悬浮浆料,并将其有效地应用于原位凝固胶态成型工艺中.将中位粒径尺寸分别为0.3μm和2.2 μm的2种氧化铝以不同级配混合后制得的粉体配制浆料.研究了氧化铝粉体颗粒度分布对高固含量氧化铝悬浮浆料流变性的影响.实验结果表明:混合粉体制成的悬浮液表现出不同的流变性.由细颗粒粉体制备的浆料表现出剪切稀化行为,但随着粗颗粒含量的增加,浆料逐渐向剪切厚化转变,依次呈现出Casson型、Bingham型、Herschel-Bulkey型3种不同的流变学特征,并得出了各自相应的流变学模型方程.讨论了流变模型转变的原因及其对胶态成型工艺的影响.粉体经级配后,当中位径d50<1μm时,浆料呈现出触变性,并且触变性随着颗粒度的减小而增大.体积分数(下同)为58%固相含量的级配浆料的粘度较50%固含量的未级配浆料下降了7至10倍,明显改善了浆料的流变性,适合于原位凝固胶态成型工艺.  相似文献   

4.
在采用偏高岭土碱激发制备地质聚合物的基础上,优化配合比,为制备出早期强度较高的地质聚合物。以NaOH和水玻璃为复合碱激发剂,研究水玻璃模数、碱当量、液固比以及养护条件对偏高岭土地质聚合物抗压强度的影响。试验结果表明,偏高岭土130g、水玻璃模数1.0、碱当量11%、液固比0.31、标准养护时,制备的偏高岭土地质聚合物3d抗压强度最高,达到53.7MPa。另外,在初始液固比为0.31时,不同模数下的地质聚合物强度都达到最佳。本文为偏高岭土地质聚合物的制备提供了有效的借鉴。  相似文献   

5.
采用Anton Paar MCR 302型流变仪研究了乳胶粉掺量对纤维素醚改性水泥浆体流变性能和触变性的影响.结果表明,掺入乳胶粉的纤维素醚改性水泥浆体表现为剪切稀化的流变特性,当剪切速率较小时,浆体黏度下降显著.乳胶粉掺量越大,浆体基于Herschel-Bulkey模型拟合得到的屈服应力和黏度系数均越大.并且乳胶粉能...  相似文献   

6.
研究了水玻璃的不同模数和含固量(固相与水的质量比)对粉煤灰基矿物聚合物抗压强度的影响,同时将钠水玻璃和钠钾水玻璃对粉煤灰基矿物聚合物抗压强度的影响也进行了对比。结果表明:随着水玻璃模数的增大,粉煤灰基矿物聚合物的抗压强度增大,但是当模数超过114后,其抗压强度降低,且当模数大于2.0以后,其抗压强度显著降低。同时随着水玻璃含固量的增大,粉煤灰基矿物聚合物的抗压强度提高;对于钠水玻璃,水玻璃含固量为32%时,其抗压强度达到最大值,随水玻璃含固量继续提高,其抗压强度降低;而对于钠钾水玻璃,其抗压强度随着水玻璃含固量从16%增大到36%,而一直呈现提高的趋势。比较两种类型水玻璃激发效果发现:随着水玻璃模数和含固量的不同,钠水玻璃和钠钾水玻璃对粉煤灰的激发效果亦不同。在常温标准养护条件下,用模数为1且含固量为32%的钠水玻璃和模数为1.2且含固量为36%的钠钾水玻璃制得抗压强度分别为38.5MPa和42.1MPa的粉煤灰基矿物聚合物。用X射线衍射和红外光谱分析了粉煤灰和粉煤灰基矿物聚合物激发前后的微观结构变化,分析了水玻璃激发作用的机理。  相似文献   

7.
水泥-粉煤灰-石灰石粉复合浆体的流变性能   总被引:3,自引:0,他引:3  
马昆林  龙广成  谢友均  朱蓉 《硅酸盐学报》2013,41(5):582-587,596
采用Rheolab QC型旋转黏度计研究了水泥–粉煤灰–石灰石粉复合浆体的流变性能,分析了不同粉体含量以及石灰石粉颗粒粒径对复合浆体屈服应力、塑性黏度以及触变性的影响。结果表明:复合浆体中石灰石粉掺量增大或颗粒粒径减小,浆体屈服应力、塑性黏度和触变性均增大;随剪切速率增大,水泥–粉煤灰–石灰石粉复合浆体发生显著的剪切稀化现象,随后塑性黏度渐趋稳定,掺入石灰石粉后,提高了浆体由剪切稀化向塑性黏度逐渐稳定时需要的剪切速率;在水泥–粉煤灰体系浆体中掺入质量分数为20%~40%石灰石粉能够显著改善浆体的流变性能,提高浆体的稳定性。  相似文献   

8.
正交试验研究矿物聚合物抗压强度   总被引:1,自引:1,他引:0       下载免费PDF全文
饶绍建  王克俭 《硅酸盐通报》2010,29(6):1442-1446
以粉煤灰和偏高岭土为硅铝原料,NaOH和水玻璃为激发剂,在高温下养护24 h制得了矿物聚合物.正交试验研究了偏高岭土掺量、水玻璃模数、Na2O掺量和养护温度4个因素对矿物聚合物抗压强度的影响.结果表明,当偏高岭土掺量为0,Na2O掺量为10wt%、水玻璃模数为1.5,在80 ℃下养护24 h得到的制品的抗压强度为38.2 MPa.  相似文献   

9.
制备了3种具有不同聚偏四氟乙烯(PVDF)黏结剂含量的锂离子电池正极浆料,并对它们的流变性能做了测试和比较。结果表明,随着PVDF黏结剂含量的提高,浆料的黏度变大,流动性变差。触变性测试结果还表明,只有当加入适量的PVDF时,浆料中的颗粒之间才能形成稳定均匀的浆料,过多或者过少都会导致颗粒间的团聚产生。  相似文献   

10.
利用数字黏度测量仪对生物质复合材料的浆料阶流变特性进行研究,采用SEM分析浆料中纤维空间结构,最后研究了管道输送料的温度。实验结果表明:浆料中纤维搭接呈网状结构,其黏度随时间先增大后减小,最终趋于稳定。剪切速率和剪切应力之间能够利用卡森模型进行良好的拟合。随浆料温度升高,浆料黏度减小;在温度介于55~85 ℃的,充分搅拌900 s后,浆料黏度较小且稳定,最适合管道输料。  相似文献   

11.
水玻璃性能对粉煤灰基矿物聚合物的影响   总被引:4,自引:0,他引:4  
研究了水玻璃的不同模数和含固量(固相与水的质量比)对粉煤灰基矿物聚合物抗压强度的影响,同时将钠水玻璃和钠钾水玻璃对粉煤灰基矿物聚合物抗压强度的影响也进行了对比.结果表明:随着水玻璃模数的增大,粉煤灰基矿物聚合物的抗压强度增大,但是当模数超过1.4后,其抗压强度降低,且当模数大于2.0以后,其抗压强度显著降低.同时随着水玻璃含固量的增大,粉煤灰基矿物聚合物的抗压强度提高;对于钠水玻璃,水玻璃含固量为32%时,其抗压强度达到最大值,随水玻璃含固量继续提高,其抗压强度降低;而对于钠钾水玻璃,其抗压强度随着水玻璃含固量从16%增大到36%,而一直呈现提高的趋势.比较两种类型水玻璃激发效果发现:随着水玻璃模数和含固量的不同,钠水玻璃和钠钾水玻璃对粉煤灰的激发效果亦不同.在常温标准养护条件下,用模数为1且含固量为32%的钠水玻璃和模数为1.2且含固量为36%的钠钾水玻璃制得抗压强度分别为38.5MPa和42.1 MPa的粉煤灰基矿物聚合物.用X射线衍射和红外光谱分析了粉煤灰和粉煤灰基矿物聚合物激发前后的微观结构变化,分析了水玻璃激发作用的机理.  相似文献   

12.
以乳酸/丙三醇有机锆为交联剂,聚合物[一种耐高温的丙烯酰胺(AM)/N,N-二甲基丙烯酰胺(DMAM)/2-丙烯酰胺基-2-甲基丙磺酸(AMPS)三元聚合物]为稠化剂,获得了耐高温聚合物凝胶.研究了聚合物凝胶的流变学特性(黏弹性、触变性)及其交联流变动力学,获得了聚合物交联过程中黏度、黏弹性模量随时间的变化关系,并考察了剪切速率和温度对凝胶形成的影响,建立了交联流变动力学模型.结果表明,交联聚合物凝胶具有明显的黏弹性和触变性;在180℃、170 s-1下剪切120 min后,黏度达176.8 mPa·s,获得了耐高温达180℃的凝胶;一级交联流变动力学模型可拟合聚合物的交联流变动力学过程,拟合的模型参数物理意义明确合理.  相似文献   

13.
采用稻壳灰制备水玻璃,研究了碱浓度、固液比、溶煮时间对稻壳灰中二氧化硅溶出率和所得水玻璃模数的影响,试验表明稻壳灰制备水玻璃的最佳工艺为:NaOH浓度8 mol/L、固液比1∶2.5(1 g∶2.5mL)、溶煮时间3h;应用稻壳灰制备的水玻璃激发粉煤灰的活性,研究了水玻璃掺量、模数、固含量对粉煤灰胶砂强度的影响,试验发现当水玻璃模数为1.1、固含量为34%、水玻璃掺量为33%时,粉煤灰胶砂强度最大.  相似文献   

14.
研究了以循环流化床燃烧底渣为主要原料,制备地聚合物时的液固比、水玻璃模数、水玻璃中钾含量对所制备的地聚合物力学性能的影响,结果表明,液固比对地聚合物强度的影响起主要作用,而水玻璃模数和水玻璃中钾含量的影响则相对较小。控制液固比为1:2、采用KOH含量为6%和模数为1.2的水玻璃制备的地聚合物样品28d抗压强度可达84.4MPa。地聚合物经800℃高温处理2h后其样品形貌仍保持完整,且抗压强度还有不同程度地增长。  相似文献   

15.
以水玻璃和NaOH为橡胶颗粒表面改性剂,比较了两种改性剂改性增强橡胶颗粒-水泥砂浆强度的效果,并考察了水玻璃的模数和浓度对橡胶颗粒表面改性增强水泥砂浆效果的影响.通过SEM和FT-IR分析了NaOH和水玻璃表面改性橡胶颗粒的机理.实验结果表明:水玻璃表面改性橡胶颗粒增强橡胶颗粒-水泥砂浆的效果优于NaOH.水玻璃改性的橡胶颗粒,表面更加粗糙,覆盖块状凝胶凸起,同时表面存在-OH基团和Si-O基团更利于橡胶颗粒与水泥水化产物的结合.随水玻璃模数、浓度增大,水玻璃改性橡胶颗粒-水泥砂浆试样强度逐渐增大,模数对改性效果的影响更明显.  相似文献   

16.
俞康泰  陆春 《陶瓷》2002,(2):15-17
从粘土-水系统中粘土颗粒的板面结构特点,系统的PH值出发研究了浆料的絮凝和解凝现象,并就解凝剂的加入量对系统粘度的影响,就浆料的流动性,触变性,注浆速率,脱水性,挺形能力和生坯的干燥性能及颗粒分布作了定量和半定量分析,最后得出一些有益的的结论。  相似文献   

17.
瞿玲  黄青  张聪  员文杰 《硅酸盐通报》2017,36(5):1573-1576
为制备结构均匀的多孔SiC陶瓷的料浆,本文比较了不同质量分数(40%~60%)的SiC浆料的剪切应力和黏度随剪切速率的变化.结果表明:浆料的等电点在3.6左右,Zeta电位值随着pH值的增加而减小,碱性环境下分散效果更好;用Casson方程拟合浆料的剪切应力,相关系数在0.98以上,随着固相含量的增加,拟合的极限粘度和屈服应力增加;当剪切速率达到100 s-1时,固相含量为40%~55%浆料的粘度都在1 Pa·s以下,固相含量为60% 的浆料粘度大概是2.1 Pa·s.  相似文献   

18.
为揭示偏高岭土基地聚合物的微观孔结构特征并探索介孔地聚合物制备和微孔结构调控途径,采用氮气吸附法研究了偏高岭土基地聚合物的吸附/脱附等温曲线和微观孔结构特征(包括总孔体积、比表面积、孔形状和孔径分布等),并讨论了水玻璃模数和水用量对地聚合物孔结构的影响。结果表明:偏高岭土基地聚合物吸附/脱附等温曲线为IV型,迟滞回线为H1和H3混合型;总孔体积为0.141 8~0.313 6 cm~3/g,比表面积为28.87~53.25 m~2/g,孔径为2~92 nm,其中孔径为2~50 nm的介孔分别占总孔体积和比表面积的97.82%和98.87%;地聚合物中的孔以两端开放的圆柱形孔、平行板狭缝孔为主,同时存在少量一端封闭的圆柱形孔、平行板狭缝孔或墨水瓶孔。调整水玻璃模数和水用量均可在一定范围内调控偏高岭土基地聚合物孔结构。水玻璃模数由1.2增至1.8时,其总孔体积由0.225 3 cm~3/g降至0.141 8 cm~3/g,最可几孔径在13.91~19.56 nm范围;水用量由15.5增至18.5时,其总孔体积从0.221 9 cm~3/g逐渐增至0.313 6 cm~3/g,孔径分布先由水用量为15.5的单峰分布变为双峰分布;水用量增至18.5时,孔径分布显著宽化,最可几孔径消失。水用量比水玻璃模数对偏高岭土基地聚合物孔结构具有更强的调控效应。  相似文献   

19.
低电荷密度聚丙烯酰胺水分散体的触变性研究   总被引:1,自引:0,他引:1  
从流变学的角度,利用静态剪切法对低电荷密度聚丙烯酰胺(D-amPAM)水分散体触变性进行了研究.考察了分散稳定剂浓度、分散稳定剂黏均分子量、共聚物单体浓度以及硫酸铵浓度对D-amPAM体系触变性以及触变强度的影响.结果表明,随分散稳定剂浓度的增加,体系的触变性越来越明显,触变强度越来越大;随分散稳定剂黏均分子量的增加,体系的静态剪切黏度及触变强度先增加后减小;共聚物单体浓度越大,体系的触变形态越稳定单一,触变强度以及静态剪切黏度越大;不同硫酸铵浓度下制取的分散体系触变性及触变强度变化较大.  相似文献   

20.
将高岭土加入有机硅液体中可提高体系黏度,制备成高硅含量的陶瓷浆料,可用于陶瓷先驱体的注模成型。传统高岭土与有机硅液体的相容性很差,需将高岭土进行改性。本文研究了用于高流动性注模陶瓷先驱体高压注浆浆料的惰性高岭土填料的改性方法,以硅烷偶联剂为改性剂,通过化学机理进行改性。对改性前后的高岭土进行IR表征,比较官能团变化证明改性有效,通过对沉降体积和活化率的测定,拟和曲线后对改性条件进行定量分析,确定最佳改性条件是改性剂用量为2.5%~3.5%,在70℃条件下改性60min。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号