首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work a study about the adaption of the classical laminate theory for fatigue loads is presented. Cycle dependent stiffnesses of single UD 0°, UD 45° and UD 90° plies are implemented in order to calculate the fatigue-induced stiffness decrease of a multidirectional lay-up with the stacking sequence [0°/+45°/−45°/90°/90°/−45°/+45°/0°]. As second input alternative, UD 0°, UD 90° and ±45° plies are used. The calculated cycle-dependent stiffness parameters are compared to experimentally measured fatigue data of the multidirectional lay-up. The experimental test procedure used for the measurement of cycle-dependent stiffness parameters has been published previously. Results show that the experimentally measured stiffness decreases of the multidirectional lay-up can be estimated accurately based on the cyclic unidirectional input parameters.  相似文献   

2.
An experimental investigation was conducted on using small flaws purposefully introduced into composite laminates to control growth of interlaminar cracks and through-thickness crack branching. Mode I crack growth specimens were used to study branching through 0°, 90° and 45° plies. The results showed that crack growth through 0° plies could be promoted by a ply gap, but this was not as controllable as combining a ply gap with a pre-crack to create a “crack branch flaw”. Crack branching through 45° plies could be controlled using crack branch flaws, and also promoted controllably using ply gaps. Crack branching through 90° plies was seen without any flaws, but was better controlled with embedded delaminations. Using these outcomes, crack branching through two quasi-isotropic laminates was demonstrated. The results have application to improved damage tolerance and fracture toughness, by taking advantage of high toughness crack growth mechanisms.  相似文献   

3.
4.
D.J. Lekou  T.P. Philippidis   《Composites Part B》2008,39(7-8):1247-1256
Results are presented from an experimental study for the modeling of stochastic behavior of a unidirectional Glass/Polyester composite. An analytical approach is developed for the prediction of failure under general in-plane loading including the variability of strength, stiffness and the thermal expansion coefficients. Monte Carlo simulation and the first-order reliability method are used for comparison and the new method is proved to be in good agreement. Following international design codes, a direct comparison is also presented for failure locii at a specific reliability level as derived by the various probabilistic approaches. Results reveal that a serious overestimation of the reliability of the composite structure is being made when the stochastic nature of the material elastic properties is not taken into account.  相似文献   

5.
The characterisation of the damage state of composite structures is often performed using the acoustic behaviour of the composite system. This behaviour is expected to change significantly as the damage is accumulating in the composite. It is indisputable that different damage mechanisms are activated within the composite laminate during loading scenario. These “damage entities” are acting in different space and time scales within the service life of the structure and may be interdependent. It has been argued that different damage mechanisms attribute distinct acoustic behaviour to the composite system. Loading of cross-ply laminates in particular leads to the accumulation of distinct damage mechanisms, such as matrix cracking, delamination between successive plies and fibre rupture at the final stage of loading. As highlighted in this work, the acoustic emission activity is directly linked to the structural health state of the laminate. At the same time, significant changes on the wave propagation characteristics are reported and correlated to damage accumulation in the composite laminate. In the case of cross ply laminates, experimental tests and numerical simulations indicate that, typical to the presence of transverse cracking and/or delamination, is the increase of the pulse velocity and the transmission efficiency of a propagated ultrasonic wave, an indication that the intact longitudinal plies act as wave guides, as the transverse ply deteriorates. Further to transverse cracking and delamination, the accumulation of longitudinal fibre breaks becomes dominant causing the catastrophic failure of the composite and is expected to be directly linked to the acoustic behaviour of the composite, as the stiffness loss results to the velocity decrease of the propagated wave. In view of the above, the scope of the current work is to assess the efficiency of acoustic emission and ultrasonic transmission as a combined methodology for the assessment of the introduced damage and furthermore as a structural health monitoring tool.  相似文献   

6.
A non-local ply scale criterion [Hochard C, Lahellec N, Bordreuil C. A ply scale non-local fibre rupture criterion for CFRP woven ply laminated structures. Compos Struct 2007;80:321–26] was previously developed for predicting the failure of balanced woven ply structures with stress concentrations. This non-local criterion was based on the mean values determined over a Fracture Characteristic Volume (FCV) corresponding to a cylinder with a circular area and the same thickness as the ply. This non-local approach along with a ply scale continuum damage behavioural model was implemented in the ABAQUS Finite Element Code. The behavioural model was developed from a classical Continuum Damage Mechanics (CDM) model [Ladevèze P. A damage computational method for composite structures. Comput Struct 1992;44:79–87]. In the present study, this approach was extended to the case of unbalanced woven ply. The FCV approach and the CDM behavioural model are presented and comparisons are made between the experimental data and the modelling predictions obtained on plates with open holes, notches and saw cuts.  相似文献   

7.
8.
Carbon fibre reinforced polymer (CFRP) laminated composites have become attractive in the application of wind turbine blade structures. The cyclic load in the blades necessitates the investigation on the flexural fatigue behaviour of CFRP laminates. In this study, the flexural fatigue life of the [+45/−45/0]2s CFRP laminates was determined and then analysed statistically. X-ray microtomography was conducted to quantitatively characterise the 3D fatigue damage. It was found that the fatigue life data can be well represented by the two-parameter Weibull distribution; the life can be reliably predicted as a function of applied deflections by the combined Weibull and Sigmodal models. The delamination at the interfaces in the 1st ply group is the major failure mode for the flexural fatigue damage in the CFRP laminate. The calculated delamination area is larger at the interfaces adjacent to the 0 ply. The delamination propagation mechanism is primarily matrix/fibre debonding and secondarily matrix cracking.  相似文献   

9.
Following the onset of damage caused by an impact load on a composite laminate structure, delaminations often form propagating outwards from the point of impact and in some cases can migrate via matrix cracks between plies as they grow. The goal of the present study is to develop an accurate finite element modeling technique for simulation of the delamination–migration phenomena in laminate impact damage processes. An experiment was devised where, under a quasi-static indentation load, an embedded delamination in the facesheet of a laminate sandwich specimen migrates via a transverse matrix crack and then continues to grow on a new ply interface. Using data from this test for validation purposes, several finite element damage simulation methods were investigated. Comparing the experimental results with those of the different models reveals certain modeling features that are important to include in a numerical simulation of delamination–migration and some that may be neglected.  相似文献   

10.
This paper presents a study on the anchorage capacity of Carbon Fiber Reinforced Polymer (CFRP) strips bonded to a cementitious substrate used for concrete surface reprofiling. The structural strengthening of a large-scale prestressed concrete girder in the framework of a bridge retrofitting project by means of prestressed CFRP strips required the levelling of an initial negative camber of about 2–4 cm. Both midspan and girder end situations were investigated with lap-shear and prestress force-releasing tests. Four different solutions regarding the levelling material, i.e. three mortars applied by hand as well as dry shotcrete, were tested. The results in terms of strain, slip and total anchorage resistance are presented and compared. In the end, dry shotcrete is recommended for the girder application. In addition to a very convincing bond behavior, the application is, despite the necessity of involving a specialized company from the field, clearly less time-consuming and easier. The retained solution represents an interesting approach for future applications in bridge retrofitting when an even surface is necessary for bonding CFRP strips.  相似文献   

11.
Compression fatigue failure of CFRP laminates with impact damage   总被引:2,自引:0,他引:2  
The objective of this study is to investigate failure mechanisms of impact-damaged CFRP laminates subjected to compression fatigue. Two kinds of composite materials, UT500/Epoxy and AS4/PEEK, were used to examine the dependence of failure behavior on the material properties such as interlaminar toughness. Impact-induced delaminations in the UT500/Epoxy specimen were considerably larger than those in the AS4/PEEK specimen. The SN curves for the UT500/Epoxy specimens with impact damage exhibited a similar tendency to those without impact. The impact-induced delamination in the UT500/Epoxy specimen grew widthwise to the free edge on the rear side of the specimen during the fatigue test. On the other hand, the AS4/PEEK specimens without impact exhibited a more steeply declining SN curve than those with impact damage. The delaminations in the impacted AS4/PEEK specimen did not reach the free edge before the fatigue fracture.  相似文献   

12.
An energy-based model is developed to predict the evolution of sub-critical matrix crack density in symmetric multidirectional composite laminates for the case of multiaxial loading. A finite element-based numerical scheme is also developed to evaluate the critical strain energy release rate, GIc, associated with matrix micro-cracking, a parameter that previously required fitting with experimental data. Furthermore, the prediction scheme is improved to account for the statistical variation of GIc within the material volume by using a two-parameter Weibull distribution. The variation of GIc with increasing crack density is also accounted for based on reported experimental evidence. The simulated results for carbon/epoxy and glass/epoxy cross-ply laminates demonstrate the ability of the improved model to predict the evolution of multidirectional ply cracking. By integrating this damage evolution model with the synergistic damage mechanics approach for stiffness degradation, the stress-strain response of the studied laminates is predicted. Finally, biaxial stress envelopes for ply crack initiation and pre-determined stiffness degradation levels are predicted to serve as representative examples of stiffness-based design and failure criterion.  相似文献   

13.
Experimental results are presented which allow the hybrid effect to be evaluated accurately for thin ply carbon/epoxy–glass/epoxy interlayer hybrid composites. It is shown that there is an enhancement in strain at failure of up to 20% for very thin plies, but no significant effect for thicker plies. Hybrid specimens with thick carbon plies can therefore be used to measure the reference carbon/epoxy failure strain. The latter is significantly higher than the strain from all-carbon specimens in which there is an effect due to stress concentrations at the load introduction. Models are presented which illustrate the mechanisms responsible for the hybrid effect due to the constraint on failure at both the fibre and ply level. These results give a good understanding of how variability in the carbon fibre strengths can translate into hybrid effects in composite laminates.  相似文献   

14.
In this research, two thicknesses of a woven CFRP laminate have been subjected to impact by a steel sphere in a velocity regime ranging from 170 to 374 m/s. Impact and penetration of targets at normal and oblique incidence were studied using high speed video. For the normal incidence targets at the higher velocities of impact, a conical mass of laminate was ejected ahead of the projectile. Furthermore, despite the energy transferred to the plate increasing with impact energy, the degree of delamination in the thicker targets decreased indicating a change in projectile penetration mechanism. Eventually, the degree of delamination in the thicker targets appeared to approach an asymptotic level whereas for the thinner targets the degree of delamination appeared constant regardless of impact energy. For oblique targets, more of the kinetic energy was transferred from the projectile when compared to the same thickness of target that had been subjected to a normal incidence impact. However, this was merely due to a geometrical effect. Further, thicker panels appeared to behave more efficiently by absorbing more kinetic energy per effective linear thickness at the lower impact energies where petalling is a dominant factor in the penetration. This advantage appeared to disappear as the impact energy was increased.  相似文献   

15.
The present work is concerned with the study of the damage behaviour of a composite material based on glass fibre reinforced polymer (GFRP). The main goal is to predict the rupture force using model equations that combine enough mathematical simplicity to allow their usage in engineering problems with the capability of describing a complex nonlinear mechanical behaviour. A model for tensile developed within the framework of Continuum Damage Mechanics that accounts for the effect of the load rate and temperature of the system is proposed and analyzed. The predicted values of tensile stress for different values of the load rate and temperature are compared with experimental data, showing a good agreement.  相似文献   

16.
Cross-ply polymer laminates reinforced by ultra-high molecular weight polyethylene (UHWMPE) fibers and tapes have been subjected to quasi-static indentation by a flat-bottomed, circular cross section punch and their penetration resistance and failure mechanisms investigated. Three fiber- and two tape-reinforced grades progressively failed during indentation via a series of unstable failure events accompanied by substantial load drops. This resulted in a ‘saw-tooth’ load versus indentation depth profile as the load increased with indentation depth after each failure event. The penetration behavior scaled with the ratio of the thickness of the remaining laminate to the diameter of the punch, and the indentation pressure scaled with the through thickness compressive strength. Failure occurred by ply rupture. The results are consistent with penetration governed by an indirect tension failure mechanism, and with experimental reports that tape-reinforced materials have a similar ballistic resistance to the higher tensile strength fiber-reinforced grades in rear-supported test conditions.  相似文献   

17.
The characterisation of mixed-mode fracture toughness and fatigue delamination growth in fibre-reinforced composites is crucial for assessing the integrity of structural elements in service. An asymmetric cut-ply coupon (ACP) loaded in four-point bending is here proposed to carry out the aforementioned characterisations. Analytical expressions of the energy release rate and mode-mixity for the ACP are derived and validated by means of finite element analysis. A fracture toughness and fatigue characterisation of the carbon/epoxy material IM7/8552 is carried out via ACP specimens. It is proved that the material data obtained from ACP specimens match those generated using ASTM standard mixed-mode bending (MMB) coupons. The main reason for the introduction of the ACP test resides in its applicability to characterisation scenarios where measuring the delamination length with optical means, as required for MMB coupons, is difficult. Such scenarios include the investigation of static and fatigue delamination growth at low and high temperatures, which requires the usage of environmental chambers. This poses significant constraints in terms of volume available for the test rigs, and, most importantly, limitations on visual access to observe delamination propagation. However, the manufacturing of ACP coupons is more complex than for MMB specimens and the testing requires several additional precautions that are here discussed in detail.  相似文献   

18.
A quasi-isotropic CFRP laminate, containing a notch or circular hole, is subjected to combined tension and shear, or compression. The measured failure strengths of the specimens are used to construct failure envelopes in stress space. Three competing failure mechanisms are observed, and for each mechanism splitting within the critical ply reduces the stress concentration from the hole or notch: (i) a tension-dominated mode, with laminate failure dictated by tensile failure of the 0° plies, (ii) a shear-dominated mode entailing microbuckling of the −45° plies, and (iii) microbuckling of the 0° plies under remote compression. The net section strength (for all stress states investigated) is greater for specimens with a notch than a circular hole, and this is associated with greater split development in the load-bearing plies. The paper contributes to the literature by reporting sub-critical damage modes and failure envelopes under multi-axial loading for two types of stress raiser.  相似文献   

19.
With the growing interest to use composite materials and honeycomb sandwich panels in industrial fields, much attention is devoted to the development of non-destructive testing (NDT) techniques for the detection and evaluation of defects. In this work, scanning pulsed eddy current (PEC) was investigated and two features, representing the magnetic field intensity and conductivity, were used to characterise the different types of defects in carbon fibre reinforced plastics (CFRP) laminates and honeycomb sandwich panels. The experimental results show that the low energy impact from 4 J to 12 J, conductive and non-conductive insert defects can be effectively detected and evaluated using the proposed methods. The effectiveness was verified and the advantages of scanning PEC were addressed through comparative studies with flash thermography and shearography.  相似文献   

20.
The reinforcement effects of two nanofillers, i.e., multi-walled carbon nanotube (MWCNT) and vapor grown carbon fiber (VGCF), which are used at the interface of conventional CFRP laminates, and in epoxy bulk composites, have been investigated. When using the two nanofillers at the interface between two conventional CFRP sublaminates, the Mode-I interlaminar tensile strength and fracture toughness of CFRP laminates are improved significantly. The performance of VGCF is better than that of MWCNT in this case. For epoxy bulk composites, the two nanofillers play a similar role of good reinforcement in Young’s modulus and tensile strength. However, the Mode-I fracture toughness of epoxy/MWCNT is much better than that of epoxy/VGCF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号