首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiwalled carbon nanotubes (MWCNTs)/epoxy nanocomposites were fabricated by using ultrasonication and the cast molding method. In this process, MWCNTs modified by mixed acids were well dispersed and highly loaded in an epoxy matrix. The effects of MWCNTs addition and surface modification on the mechanical performances and fracture morphologies of composites were investigated. It was found that the tensile strength improved with the increase of MWCNTs addition, and when the content of MWCNTs loading reached 8 wt.%, the tensile strength reached the highest value of 69.7 MPa. In addition, the fracture strain also enhanced distinctly, implying that MWCNTs loading not only elevated the tensile strength of the epoxy matrix, but also increased the fracture toughness. Nevertheless, the elastic modulus reduced with the increase of MWCNTs loading. The reasons for the mechanical property changes are discussed.  相似文献   

2.
Composites based on epoxy resin and differently aligned multi-walled carbon nanotube (MWCNT) sheets have been developed using hot-melt prepreg processing. Aligned MWCNT sheets were produced from MWCNT arrays using the drawing and winding technique. Wavy MWCNTs in the sheets have limited reinforcement efficiency in the composites. Therefore, mechanical stretching of the MWCNT sheets and their prepregs was conducted for this study. Mechanical stretching of the MWCNT sheets and hot stretching of the MWCNT/epoxy prepregs markedly improved the mechanical properties of the composites. The improved mechanical properties of stretched composites derived from the increased MWCNT volume fraction and the reduced MWCNT waviness caused by stretching. With a 3% stretch ratio, the MWCNT/epoxy composites achieved their best mechanical properties in this study. Although hot stretching of the prepregs increased the tensile strength and modulus of the composites considerably, its efficiency was lower than that of stretching the MWCNT sheets.  相似文献   

3.
Review of the mechanical properties of carbon nanofiber/polymer composites   总被引:1,自引:0,他引:1  
In this paper, the mechanical properties of vapor grown carbon nanofiber (VGCNF)/polymer composites are reviewed. The paper starts with the structural and intrinsic mechanical properties of VGCNFs. Then the major factors (filler dispersion and distribution, filler aspect ratio, adhesion and interface between filler and polymer matrix) affecting the mechanical properties of VGCNF/polymer composites are presented. After that, VGCNF/polymer composite mechanical properties are discussed in terms of nanofibers dispersion and alignment, adhesion between the nanofiber and polymer matrix, and other factors. The influence of processing methods and processing conditions on the properties of VGCNF/polymer composite is also considered. At the end, the possible future challenges for VGCNF and VGCNF/polymer composites are highlighted.  相似文献   

4.
The excellent mechanical properties of carbon nanotubes (CNTs) make them the ideal reinforcements for high performance composites. The misalignment and waviness of CNTs within composites are two major issues that limit the reinforcing efficiency. We report an effective method to increase the strength and stiffness of high volume fraction, aligned CNT composites by reducing CNT waviness using a drawing and stretching approach. Stretching the composites after fabrication improved the ultimate strength by 50%, 150%, and 190% corresponding to stretch ratios of 2%, 4% and 7%, respectively. Improvement of the electrical conductivities exhibited a similar trend. These results demonstrate the importance of straightening and aligning CNTs in improving the composite strength and electrical conductivity.  相似文献   

5.
Carbon nanotubes (CNTs) were incorporated into polystyrene (PS) and poly(methyl methacrylate) (PMMA) matrices via in situ emulsion and emulsion/suspension polymerization methods. The polymerizations were carried out using various initiators, surfactants, and carbon nanotubes to determine their influence on polymerization and on the properties of the composites. The loading of CNTs in the composites varied from 0 to 15 wt.%, depending on the CNTs used. Morphology and dispersion of the CNTs were analyzed by transmission and scanning electron microscopy techniques. The dispersion of multi-walled carbon nanotubes (MWCNT) in the composites was excellent, even at high CNT loading. The mechanical properties, and electrical and thermal conductivities, of the composites were also analyzed. Both electrical and thermal conductivities were improved.  相似文献   

6.
Highly-oriented polyoxymethylene (POM)/multi-walled carbon nanotube (MWCNT) composites were fabricated through solid hot stretching technology. With the draw ratio as high as 900%, the oriented composites exhibited much improved thermal conductivity and mechanical properties along the stretching direction compared with that of the isotropic samples before drawing. The thermal conductivity of the composite with 11.6 vol.% MWCNTs can reach as high as 1.2 W/m K after drawing. Microstructure observation demonstrated that the POM matrix had an ordered fibrillar bundle structure and MWCNTs in the composite tended to align parallel to the stretching direction. Wide-angle X-ray diffraction results showed that the crystal axis of the POM matrix was preferentially oriented perpendicular to the draw direction, while MWCNTs were preferentially oriented parallel to the draw direction. The strong interaction between the POM matrix and the MWCNTs hindered the orientation movement of molecules of POM, but induced the orientation movement of MWCNTs.  相似文献   

7.
Multi-phase composites have been studied by incorporating carbon nanotubes (CNTs) as a secondary reinforcement in an epoxy matrix which was then reinforced with glass fiber mat. Different types of CNTs e.g. amino functionalized carbon nanotubes (ACNT) and pristine carbon nanotubes (PCNT) were homogeneously dispersed in the epoxy matrix and two-ply laminates were fabricated using vacuum-assisted resin infusion molding technique. The issues related to CNT dispersion and interfacial bonding and its affect on the mechanical properties have been studied. An important finding of this study is that PCNT scores over ACNT in composites prepared under certain conditions. This is a very significant finding since PCNT is available at a much lower cost than ACNT.  相似文献   

8.
The chemically stitched graphene oxide (GO) sheets were obtained using a click chemistry reaction between azide-functionalized GO and alkyne-functionalized GO. The click coupled GO (GO-click-GO) sheets showed the largely increased electrical conductivity and near infrared laser-induced photothermal properties compared to the GO sheets, which result from formation of triazole ring as a bridging linker between the GO sheets. The polyurethane (PU) nanocomposites incorporating the GO-click-GO sheets exhibited enhanced mechanical properties of breaking stress and modulus than the GO/PU nanocomposites. The modulus of GO-click-GO/PU nanocomposites was higher than that of the GO/PU nanocomposites at the same filler loading of 0.1 and 0.5 wt%. The GO-click-GO/PU nanocomposites also showed a significantly improved photothermal properties compared to the GO/PU nanocomposites at the same filler loading. The click coupled stitched GO sheets in this study can be used as the superior reinforcing fillers for mechanically and photothermally high performance polymer nanocomposites.  相似文献   

9.
Bio-composites with poly(lactic) acid as matrix and various algae (red, brown and green) as filler were prepared via melt mixing. Algae initial size (below 50 μm and between 200 and 400 μm) and concentration (from 2 to 40 wt%) were varied. First, algae morphology, composition and surface properties are analysed for each algae type. Second, an example of algae particle size decrease during processing is given. Finally, tensile properties of composites are analysed. The surface of algae flakes was covered with inorganic salts affecting filler–matrix interactions. The Young’s modulus of composites increased at 40 wt% load of algae as compared with neat PLA although the strain at break and tensile strength decreased. In most cases the influence of algae type was minor. Larger flakes led to better mechanical properties compared to the smaller ones.  相似文献   

10.
Soy polyol-based polyurethane (PU) nanocomposites (PUNCs) with 1 wt.% hydroxyl-functionalized multi-wall carbon nanotubes (CNT-OH) were prepared via in situ polymerization. CNT-OH increased the glass transition temperature as well as significantly improved the thermal stability and conductivity of the PUNCs. The PUNC Young’s modulus was much lower than that of neat PU. The tensile strength of the PUNCs with large CNT-OH diameters was slightly higher than that of neat PU. Compared with neat PU, the elongation at break of the PUNCs improved by 30%, 39%, and 45% with increased CNT-OH diameters. Scanning and transmission electron microscopic methods revealed CNT-OH relatively homogeneous dispersion in the PU matrix.  相似文献   

11.
A nanocomposite with soluble high-performance poly(phthalazinone ether sulfone ketone) (PPESK) as matrix and multi-walled carbon nanotube buckypaper (MWCNT-BP) as reinforcement was fabricated by hot-press processing. The morphologies, dynamic and static mechanical behavior, thermal stability of the MWCNT-BP/PPESK composites were studied using scanning electron microscope (SEM), dynamic mechanical analyzer (DMA) and thermogravimetric analyzer (TGA). SEM microphotographs revealed a high impregnation degree of the MWCNT-BP/PPESK composites. Dynamic and static mechanical analysis revealed that the nanocomposites possessed high storage modulus, and good retention rate of mechanical strength even at 250 °C, which is mainly attributed to satisfied impregnation and strong interactions between MWCNT-BP and PPESK. Thermogravimetric analysis exhibited that the nanocomposites had excellent thermal stability. These investigations confirm that MWCNT-BP can be effectively used to manufacture high-loading CNT/PPESK composites with improved properties.  相似文献   

12.
A modified method for interconnecting multi-walled carbon nanotubes (MWCNTs) was put forward. And interconnected MWCNTs by reaction of acyl chloride and amino groups were obtained. Scanning electron microscopy shows that hetero-junctions of MWCNTs with different morphologies were formed. Then specimens of pristine MWCNTs, chemically functionalized MWCNTs and interconnected MWCNTs reinforced epoxy resin composites were fabricated by cast moulding. Tensile properties and fracture surfaces of the specimens were investigated. The results show that, compared with pristine MWCNTs and chemically functionalized MWCNTs, the chemically interconnected MWCNTs improved the fracture strain and therefore the toughness of the composites significantly.  相似文献   

13.
In this work, effect of ZnO nanoparticles doped graphene (Nano-ZnO–GE) on static and dynamic mechanical properties of natural rubber composites were studied. Nano-ZnO–GE was synthesized by sol–gel method and thermal treatment. With the incorporation of nano-ZnO–GE into the matrix, the mechanical properties of NR nanocomposite significantly improved over that of NR composite containing with 5 phr of conventional-ZnO. The results demonstrated that the presence of nano-ZnO on the surface of graphene sheets not only conduces to suppressing aggregation of graphene sheets but also acts as a more efficient cure-activator in vulcanization process, with the formation of excellent crosslinked network at low nano-ZnO–GE content. This work also showed that NR/Nano-ZnO–GE nanocomposites exhibited higher wet grip property and lower rolling resistance compared with NR/Conventional-ZnO composite, which makes nano-ZnO–GE very competitive for the green tire application as a substitute of conventional-ZnO, enlarging versatile practical application to prepare high-performance rubber nanocomposites.  相似文献   

14.
Polyetheretherketone (PEEK) composites reinforced with carbon fibers (CFs) and nano-ZrO2 particles were prepared by incorporating nanoparticles into PEEK/CF composites via twin-screw extrusion. The effects of nanoparticles on the mechanical and wear properties of the PEEK/CF composites were studied. The results showed that the incorporation of nano-ZrO2 particles with carbon fiber could effectively enhance the tensile properties of the composites. The tensile strength and Young’s modulus of the composites increased with the increasing nano-ZrO2 content. The enhancement effect of the particle was more significant in the hybrid reinforced composites. The compounding of the two fillers also remarkably improved the wear resistance of the composites under water condition especially under high pressures. It was revealed that the excellent wear resistance of the PEEK/CF/ZrO2 composites was due to a synergy effect between the nano-ZrO2 particles and CF. CF carried the majority of load during sliding process and prevented severe wear to the matrix. The incorporation of nano-ZrO2 effectively inhibited the CF failures through reducing the stress concentration on the carbon fibers interface and the shear stress between two sliding surfaces. It was also indicated that the wear rates of the hybrid composites decreased with the increasing applied load and sliding distance under water lubrication. And low friction coefficient and low wear rate could be achieved at high sliding velocity.  相似文献   

15.
The objective of this study was to investigate the effect of pectin and hemicellulose removal from hemp fibres on the mechanical properties of hemp fibre/epoxy composites. Pectin removal by EDTA and endo-polygalacturonase (EPG) removed epidermal and parenchyma cells from hemp fibres and improved fibre separation. Hemicellulose removal by NaOH further improved fibre surface cleanliness. Removal of epidermal and parenchyma cells combined with improved fibre separation decreased composite porosity factor. As a result, pectin removal increased composite stiffness and ultimate tensile strength (UTS). Hemicellulose removal increased composite stiffness, but decreased composite UTS due to removal of xyloglucans. In comparison of all fibre treatments, composites with 0.5% EDTA + 0.2% EPG treated fibres had the highest tensile strength of 327 MPa at fibre volume content of 50%. Composites with 0.5% EDTA + 0.2% EPG  10% NaOH treated fibres had the highest stiffness of 43 GPa and the lowest porosity factor of 0.04.  相似文献   

16.
The thermal, mechanical and ablation properties of carbon fibre/phenolic composites filled with multiwall carbon nanotubes (MWCNTs) were investigated. Carbon fibre/phenolic/MWCNTs were prepared using different weight percentage of MWCNTs by compression moulding. The samples were characterized by scanning electron microscopy (SEM), flexural tests, thermal gravimetric analysis and oxyacetylene torch tests. The thermal stability and flexural properties of the nanocomposites increased by increasing MWCNTs content (wt% ⩽1), but they decreased when the content of MWCNTs was 2 wt%. The linear and mass ablation rates of the nanocomposites after modified with 1 wt% MWCNTs decreased by about 80% and 52%, respectively. To investigate the material post-test microstructure, a morphological characterization was carried out using SEM. It was shown that the presence of MWCNTs in the composite led to the formation of a strong network char layer without any cracks or opening.  相似文献   

17.
Study was made of the effect of multiwall carbon nanotubes (MWCNTs) and polymeric compatibilizer on thermal, mechanical, and tribological properties of high density polyethylene (HDPE). The composites were prepared by melt mixing in two steps. Carbon nanotubes (CNTs) were melt mixed with maleic anhydride grafted polyethylene (PEgMA) as polymeric compatibilizer to produce a PEgMA-CNT masterbatch containing 20 wt% of CNTs. The masterbatch was then added to HDPE to prepare HDPE nanocomposites with CNT content of 2 or 6 wt%. The unmodified and modified (hydroxyl or amine groups) CNTs had similar effects on the properties of HDPE-PEgMA indicating that only non-covalent interactions were achieved between CNTs and matrix. According to SEM studies, single nanotubes and CNT agglomerates (size up to 1 μm) were present in all nanocomposites regardless of content or modification of CNTs. Addition of CNTs to HDPE-PEgMA increased decomposition temperature, but only slight changes were observed in crystallization temperature, crystallinity, melting temperature, and coefficient of linear thermal expansion (CLTE). Young’s modulus and tensile strength of matrix clearly increased, while elongation at break decreased. Measured values of Young’s moduli of HDPE-PEgMA-CNT composites were between the values of Young’s moduli for longitudinal (E11) and transverse (E22) direction predicted by Mori-Tanaka and Halpin-Tsai composite theories. Addition of CNTs to HDPE-PEgMA did not change the tribological properties of the matrix. Because of its higher crystallinity, PEgMA possessed significantly different properties from HDPE matrix: better mechanical properties, lower friction and wear, and lower CLTE in normal direction. Interestingly, the mechanical and tribological properties and CLTEs of HDPE-PEgMA-CNT composites lie between those of PEgMA and HDPE.  相似文献   

18.
Structural, mechanical and tribological properties of composite materials based on ultra-high molecular weight polyethylene reinforced with carbon fibers were investigated. The effect of surface modification of carbon fibers on the interaction at the fiber–matrix interface in UHMWPE based composites was studied. It was found that the thermal oxidation of carbon fibers by air oxygen at 500 °C can significantly enhance the interfacial interaction between the polymer matrix and carbon fibers. This allowed us to form composite materials with improved mechanical and tribological properties.  相似文献   

19.
A composite of cellulose-nanofibers (Cel-F)/polyvinyl alcohol (PVA) was made through a developed water-jet nano-isolation process called the Star Burst processing (SB). The structural and the mechanical properties of the pure Cel-F and the Cel-F/PVA composites were analyzed for comparison. The microstructural analyses revealed the step-by-step nano-isolation procedures of the SB processing, eventually constructing nanofibers with the minimum diameter of ∼23 nm. It was also found that the crystallinity of Cel-F was rapidly increased by 14% at the early stage of the SB process, subsequently becoming almost constant, irrespective of the number of the SB treatments. Additionally, Cel-F were homogenously dispersed in PVA matrix after 40 SB treatments. Young’s modulus of the resulting composite was increased by 48%. The results were in good agreement with the outcome of the short-fiber composite theory, indicating a highly potential use of the SB-processed cellulose nanofibers as new reinforcement materials.  相似文献   

20.
In this study the effect of moisture absorption on the mechanical properties of glass-reinforced polyester composites is evaluated using both destructive and nondestructive tests. The composite resins were produced with two different production processes, while the mechanical properties of the composite materials were measured using DMA destruction tests. According to the DMA tests, the dependency in terms of temperature for the real component of the complex elastic modulus (E′), the imaginary component of the complex elastic modulus (E″), as well as tan(δ) can be traced. For a more efficient use of the composite materials, the compliance tensor was obtained with nondestructive tests based on ultrasound. A method for the generation and reception of Lamb waves in plates of composite materials is described, based on using air-coupling, low-frequency, ultrasound transducers in a pitch–catch configuration. The results of the nondestructive measurements made in this study are in good agreement with those obtained when using the DMA destructive tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号