首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In order to clarify the effects of carbon fiber size on the properties of carbon fiber/high strength glass fabric (HSGF)/phenolic laminate, two kinds of laminates modified by nano-sized carbon fibers (CNFs) and micro-sized carbon fibers (CMFs), were respectively fabricated. The interlaminar shear strength (ILSS) and tribological properties of HSGF/phenolic laminates modified by CNFs and CMFs in water environment were comparatively investigated. Results showed that CNFs at proper contents ranging from 1.0% to 3.0% can enhance ILSS of HSGF/phenolic laminate, while CMFs deteriorated the ILSS. After water immersion, ILSS of the laminates modified by CNFs at 1.0–3.0% were just slightly decreased; however, those of the laminates modified by CMFs suffered larger drop. On the other hand, however, CMFs were more effective than CNFs in improving the wear resistance of HSGF/phenolic laminate in water.  相似文献   

2.
In this paper, stacked-cup carbon nanofibers (CNF) were dispersed in the matrix phase of carbon-fiber-reinforced composites based on a high-performance epoxy system with and without modification by an elastomeric triblock copolymer (TCP) for increased toughness. The addition of the TCP provided an enhancement in toughness at the cost of a slight degradation in modulus and strength. The CNFs, on the other hand, provided significantly enhanced strength and stiffness in matrix-dominated configurations, including tension of quasi-isotropic composites and short beam shear strength of both quasi-isotropic and unidirectional composites. Scanning electron microscopy revealed enhanced adhesion between the matrix and carbon fibers with the addition of either TCP or CNFs. However, CNF agglomeration in the studied systems partially offset the energy dissipation processes brought about by the nanofibers, thereby limiting interlaminar fracture toughness enhancements by CNF addition. These results show good promise for CNFs as low-cost reinforcement for composites while offering insight into the codependent morphologies of multi-scale phases and their influence over bulk properties.  相似文献   

3.
Carbon nanotubes (CNTs) were incorporated at 0.5 wt% in epoxy resin using sonication at two different levels of amplitude (50% and 100% of 400 W nominal sonication power). The CNTs modified epoxy systems were used to manufacture carbon fibre reinforced laminates (CFRPs). All specimens were subjected to thermal shock and hygrothermal exposure. The presence of CNTs did not alter the water absorption profiles for the epoxy resin, but it resulted in a spectacular 40% reduction in the water uptake at equilibrium for the CFRPs. The interlaminar shear strength of the CFRPs was not significantly affected by the thermal shock cycles; however it was reduced by 50–60% after hygrothermal exposure. The addition of CNTs led to slightly lower interlaminar shear strength values in the as-manufactured state. However their presence did not accelerate the deterioration of the strength after the environmental exposure. Although the addition of CNTs did not significantly influence the thermomechanical properties of the resin, they were beneficial in the case of the CFRPs since (i) they enhanced the storage modulus and glass transition temperature and (ii) limited the deterioration of these properties after thermal shock and hygrothermal exposure. The amplitude level during sonication which determined the dispersion state and length of the CNTs had a clear effect on the durability of the studied systems.  相似文献   

4.
In this study, carbon fibers (CFs) were coated with graphene nanoplatelets (GnP), using a robust and continuous coating process. CFs were directly immersed in a stable GnP suspension and the coating conditions were optimized in order to obtain a high density of homogeneously and well-dispersed GnP. GnP coated CFs/epoxy composites were manufactured by a prepreg and lay-up method, and the mechanical properties and electrical conductivity of the composites were assessed. The GnP coated CFs/epoxy composites showed 52%, 7%, and 19% of increase in comparison with non-coated CFs/epoxy composites, for 90° flexural strength, 0° flexural strength and interlaminar shear strength, respectively. Meanwhile, incorporating GnP in the CF/epoxy interphase significantly improved the electrical conductivity through the thickness direction by creating a conductive path between the fibers.  相似文献   

5.
Herein we report the development and evaluation of hybrid multi-scale epoxy composite made of conventional carbon fiber fabrics with interlaminar regions containing mats of electrospun carbon nanofibers (ECNs). The results indicated that (1) the interlaminar shear strength and flexural properties of hybrid multi-scale composite were substantially higher than those of control/comparison composite without ECNs; in particular, the interlaminar shear strength was higher by ∼86%; and (2) the electrical conductivities in both in-plane and out-of-plane directions were enhanced through incorporation of ECNs, while the enhancement of out-of-plane conductivity (∼150%) was much larger than that of in-plane conductivity (∼20%). To validate the data reduction procedure, a new shear stress formula was formulated for composite laminates, which took into account the effect of layup and inter-layers. The study suggested that ECNs could be utilized for the development of high-performance composites, particularly with the improved out-of-plan properties (e.g., interlaminar shear strength).  相似文献   

6.
The objective of this work is to improve the interlaminar shear strength of composites by mixing epoxy resin and modifying carbon fibres. The effect of mixed resin matrix’s structure on carbon fibres composites was studied. Anodic oxidation treatment was used to modify the surface of carbon fibres. The tensile strength of multifilament and interlaminar shear strength of composites were investigated respectively. The morphologies of untreated and treated carbon fibres were characterized by scanning electron microscope and X-ray photoelectron spectroscopy. Surface analysis indicates that the amount of carbon fibres chemisorbed oxygen-containing groups, active carbon atom, the surface roughness, and wetting ability increases after treatment. The tensile strength of carbon fibres decreased little after treatment by anodic oxidation. The results show that the treated carbon fibres composites could possess excellent interfacial properties with mixed resins, and interlaminar shear strength of the composites is up to 85.41 MPa. The mechanism of mixed resins and treated carbon fibres to improve the interfacial property of composites is obtained.  相似文献   

7.
The goal of the present study was to investigate the influence of multi-wall carbon nanotubes (MWCNTs) on the impact and after impact behaviour of carbon fiber reinforced polymer (CFRP) laminates. About 0.5% per weight MWCNTs were dispersed via a high shear device in the epoxy matrix (Bisphenol A) of carbon reinforced quasi-isotropic laminates. Subsequently, the modified CFRPs were subjected to low-energy impact and directly compared with unmodified laminates. In previous studies, the beneficial effect of the MWCNT inclusion to the fracture properties of CFRPs has been demonstrated. In terms of the CFRP impact performance, enhanced performance for the CNT doped specimens was observed for higher energy levels. However, the after-impact properties and more specifically compression after impact were improved for both the effective compression modulus and the compression strength. In addition, compression–compression fatigue after impact performance of the CNT modified laminates was also improved, by extending the fatigue life.  相似文献   

8.
This study examined the mechanical properties of aligned multi-walled carbon nanotube (CNT)/epoxy composites processed using a hot-melt prepreg method. Vertically aligned ultra-long CNT arrays (forest) were synthesized using chemical vapor deposition, and were converted to horizontally aligned CNT sheets by pulling them out. An aligned CNT/epoxy prepreg was fabricated using hot-melting with B-stage cured epoxy resin film. The resin content in prepreg was well controlled. The prepreg sheets showed good drapability and tackiness. Composite film specimens of 24-33 μm thickness were produced, and tensile tests were conducted to evaluate the mechanical properties. The resultant composites exhibit higher Young’s modulus and tensile strength than those of composites produced using conventional CNT/epoxy mixing methods. For example, the maximum elastic modulus and ultimate tensile strength (UTS) of a CNT (21.4 vol.%)/epoxy composite were 50.6 GPa and 183 MPa. These values were, respectively, 19 and 2.9 times those of the epoxy resin.  相似文献   

9.
An effective carbon fiber/graphene oxide/carbon nanotubes (CF-GO-CNTs) multiscale reinforcement was prepared by co-grafting carbon nanotubes (CNTs) and graphene oxide (GO) onto the carbon fiber surface. The effects of surface modification on the properties of carbon fiber (CF) and the resulting composites was investigated systematically. The GO and CNTs were chemically grafted on the carbon fiber surface as a uniform coating, which could significantly increase the polar functional groups and surface energy of carbon fiber. In addition, the GO and CNTs co-grafted on the carbon fiber surface could improve interlaminar shear strength of the resulting composites by 48.12% and the interfacial shear strength of the resulting composites by 83.39%. The presence of GO and CNTs could significantly enhance both the area and wettability of fiber surface, leading to great increase in the mechanical properties of GO/CNTs/carbon fiber reinforced composites.  相似文献   

10.
In this study, an experimental evaluation of the thermostamping process was made for a 3D part molded with a [0/90]12 laminate composed of unidirectional carbon fiber/polyether ether ketone (CF/PEEK) plies. Using the Taguchi method, the effect of four operational parameters on the part thickness, interlaminar shear strength and the degree of crystallinity were investigated. These parameters are the preheating temperature in the oven, the mold temperature, the oven to mold transfer time and the stamping pressure. The results show that the mold temperature and stamping pressure have a significant effect on part consolidation. In addition, the interlaminar shear strength, measured at the base of the molded part, was higher for thinner parts compared to those having a greater thickness. These results were also confirmed by Differential Scanning Calorimetry analysis, which show that the degree of crystallinity is higher for thinner parts.  相似文献   

11.
A novel Fibre–Metal Laminates (FMLs) based on carbon fibre reinforced PMR polyimide were prepared using a hot press process in this paper. Pre-treatment on the titanium surface were conducted prior to laminating. Scanning Electron Microscope (SEM) were used to observe the morphologies of the titanium and the cross-sections of the FMLs. SEM results showed that micro-roughness structures were formed on the titanium surface after anodization. This structure enhanced the interlaminar bond strength between titanium and polyimide. Flexural and Interlaminar shear (ILSS) tests showed that the FMLs possess excellent flexural and interlaminar properties at both room temperature and elevated temperature. Thermostability tests proved that the FMLs based on carbon fibre reinforced PMR polyimide offered excellent thermal properties. It is shown that no delamination appears between titanium layer and the fibre-reinforced polyimide layer after 1000 times thermal shock.  相似文献   

12.
高性能二维碳/碳复合材料的制备与性能   总被引:1,自引:0,他引:1       下载免费PDF全文
为获得高性能热结构复合材料,以国产T300碳纤维为原料,通过碳布预浸料交替铺层热压及液相浸渍裂解工艺方法制备了一系列二维碳/碳复合材料,并对二维碳/碳复合材料的微观结构特征、力学性能及烧蚀性能进行了测试与分析。研究结果表明:碳布规格及制备工艺对二维碳/碳复合材料力学性能有较大影响,当碳布规格选用八枚缎纹、经过碳化预处理且高温处理温度达到2 300℃时,二维碳/碳复合材料表现出较好的综合性能,拉伸强度和层间剪切强度的最大值分别高达301 MPa和12.4 MPa,达到了国际先进水平;在模拟典型服役环境考核状态下,制备的不同规格二维碳/碳复合材料的烧蚀性能基本相当,均未出现由于层间强度偏低而发生的烧蚀揭层现象,表现出较好的烧蚀均匀性和结构可靠性。   相似文献   

13.
The potential use of carbon fibre laminate composites is limited by the weak out-of-plane properties, especially delamination resistance. The effect of incorporating titanium carbide to the mesophase pitch matrix precursor of carbon fibre laminate composites on interlaminar shear strength is studied both on carbonised and graphitised composites. The presence of titanium carbide modifies the optical texture of the matrix from domains to mosaics in those parts with higher concentrations and it contributes to an increase of fibre/matrix bonding. This fact produces an increase of the interlaminar shear strength of the material and changes the fracture mode.  相似文献   

14.
This study examined the effect of fullerene dispersion on the mechanical properties of carbon-fiber reinforced epoxy matrix composites (CFRPs). Mechanical properties such as tension, compression, open-hole compression, comparession after impact (CAI), binding, short beam shear, and interlaminar fracture toughness were evaluated for [0]8, [90]16, [45/0/?45/90]2S laminates. Tension and compression strengths increased 2–12% by dispersing 0.5% of fullerene into the matrix resin. Furthermore, interlaminar fracture toughness of the composite was improved by about 60%. It was revealed that a small amount of fullerene (0.1–1 wt.%) increased the failure strain of epoxy resin itself, thereby improving the CFRP strength.  相似文献   

15.
Understanding the inter-ply shear behaviour of uncured carbon fibre prepreg is fundamental to avoiding process-induced defects during manufacturing of large-scale components. Shear tests for AS4/8552 are compared to a one-dimensional viscoelastic–plastic model for inter-ply shear. The paper presents a methodology capable of determining the parameters of temperature, rate and pressure required for minimum resistance to movement of a prepreg. Investigating the joint strength and friction values individually shows that friction increases with temperature, contrary to previous work, and that the new value of joint strength is predominant at lower temperatures. Rate dependent variables are strongly linked to the resin behaviour, confirming the need for a viscoelastic model. Simple application to industrial scenarios is discussed along with more complex process modelling.  相似文献   

16.
Halloysite nanotubes (HNTs), which are geometrically similar to multi-walled carbon nanotubes, can improve the impact strength of epoxy substantially, according to our previous work [1]. Using a HNT-toughened epoxy as the matrix, a set of hybrid composites was prepared with carbon fiber-woven fabrics. The interlaminar properties of the composites were investigated by a short-beam shear test, a double-cantilever-beam test and an end-notched flexure test. The results showed that the addition of HNTs to the composites improved the interlaminar shear strength and the fracture resistance under Mode I and Mode II loadings greatly. The morphological study of the hybrid composites revealed that HNTs were non-uniformly dispersed in the epoxy matrix, forming a unique microstructure with a large number of HNT-rich composite particles enveloped by a continuous epoxy-rich phase. A study of the fracture mechanism uncovered the important role of this special morphology during the fracturing of the hybrid composites.  相似文献   

17.
Alumina-reinforced carbon nanofiber nanocomposites were prepared using different routes; powders mixture, colloidal route and sol-gel process followed by spark plasma sintering (SPS). CNFs/xAl2O3 (x = 10-50 vol.%) were prepared through nanopowders mixing in a high-energy attrition milling. The main limitations in the preparation of this kind of nanocomposites are related to the difficulty in obtaining materials with a homogeneous distribution of both phases and the different chemical nature of CNFs and Al2O3, which causes poor interaction between them. A surface coating of CNFs by wet chemical routes with an alumina precursor is proposed as a very effective way to improve the interaction between CNFs and Al2O3. An improvement of 50% in fracture strength was found for similar nanocomposite compositions when the surface coating was used. The improved mechanical properties of these nanocomposites are caused by stronger interaction between the CNFs and Al2O3.  相似文献   

18.
Carbon nanotubes (CNT) in their various forms have great potential for use in the development of multifunctional multiscale laminated composites due to their unique geometry and properties. Recent advancements in the development of CNT hierarchical composites have mostly focused on multi-walled carbon nanotubes (MWCNT). In this work, single-walled carbon nanotubes (SWCNT) were used to develop nano-modified carbon fiber/epoxy laminates. A functionalization technique based on reduced SWCNT was employed to improve dispersion and epoxy resin-nanotube interaction. A commercial prepregging unit was then used to impregnate unidirectional carbon fiber tape with a modified epoxy system containing 0.1 wt% functionalized SWCNT. Impact and compression-after-impact (CAI) tests, Mode I interlaminar fracture toughness and Mode II interlaminar fracture toughness tests were performed on laminates with and without SWCNT. It was found that incorporation of 0.1 wt% of SWCNT resulted in a 5% reduction of the area of impact damage, a 3.5% increase in CAI strength, a 13% increase in Mode I fracture toughness, and 28% increase in Mode II interlaminar fracture toughness. A comparison between the results of this work and literature results on MWCNT-modified laminated composites suggests that SWCNT, at similar loadings, are more effective in enhancing the mechanical performance of traditional laminated composites.  相似文献   

19.
Hybrid nano/microcomposites with a nanoparticle reinforced matrix were developed, manufactured, and tested showing significant enhancements in damage tolerance properties. A woven carbon fiber reinforced polymer composite, with the polymer (epoxy) matrix reinforced with well dispersed carbon nanotubes, was produced using dispersant-and-sonication based methods and a wet lay-up process. Various interlaminar damage tolerance properties of this composite, including static strength, fracture toughness, fatigue life, and crack growth rates were examined experimentally and compared with similarly-processed reference material produced without nanoreinforcement. Significant improvements were obtained in interlaminar shear strength (20%), fracture toughness (180%), shear fatigue life (order of magnitude), and fatigue crack growth rate (factor of 2). Observations by scanning electron microscopy of failed specimens showed significant differences in fracture surface morphology between the two materials, related to the differences in properties and providing context for understanding of the enhancement mechanisms.  相似文献   

20.
Amine-functionalized carbon nanofibers (A-CNFs) were deposited on the surface of individual sized carbon fibers using electrophoretic deposition (EPD), and the average interfacial shear strength (IFSS) was determined using the single fiber fragmentation test in conjunction with Weibull analysis. The IFSS decreased by 25% for fibers acting as the negative electrode in water without CNFs, and the impact of agglomerates on IFSS estimation is discussed. Further, a 187% IFSS increase was achieved for fibers undergoing a two-stage A-CNF EPD approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号