共查询到20条相似文献,搜索用时 78 毫秒
1.
针对仿射结构形式在丢失数据下的条件极大似然辨识问题, 首先引入交换矩阵将原随机矢量分解成观测和丢失部分; 然后确定出观测数据在丢失数据下的条件均值和条件方差, 以此建立条件似然函数; 进而从理论上给出了条件极大似然函数关于未知参数矢量、未知白噪声方差值和丢失数据的求导公式, 并从工程上给出一种可分离的优化算法; 最后通过仿真算例验证了该辨识方法的有效性. 相似文献
2.
3.
为了解决带不确定量测和未知虚警概率的非线性非高斯系统状态估计问题,本文提出了一种新的粒子滤波方法,利用随机不确定量测模型来更新粒子和权值,并基于极大似然准则来辨识未知的虚警概率.本文所提出的带不确定量测和已知虚警概率的粒子滤波方法与现有标准的粒子滤波方法具有几乎一致的计算复杂度,但是更适合用于处理带不确定量测的非线性非高斯系统状态估计问题.此外,在状态转移密度函数被选择为建议密度函数时,本文证明了基于所提出的虚警概率辨识方法的极大似然估计唯一,从而为精确辨识虚警概率提供了理论保证.单变量非平稳增长模型和纯方位跟踪的数值仿真验证了所提出粒子滤波方法的有效性和与现有方法相比的优越性. 相似文献
4.
5.
6.
7.
8.
具有丢失数据的可分解马尔可夫网络结构学习 总被引:14,自引:0,他引:14
具有丢失数据的可分解马尔可夫网络结构学习是一个重要而困难的研究课题,数据的丢失使变量之间的依赖关系变得混乱,无法直接进行可靠的结构学习.文章结合最大似然树和Gibbs抽样,通过对随机初始化的丢失数据和最大似然树进行迭代修正一调整,得到修复后的完整数据集;在此基础上基于变量之间的基本依赖关系和依赖分析思想进行可分解马尔可夫网络结构学习,能够避免现有的丢失数据处理方法和可分解马尔可夫网络结构学习方法存在的效率和可靠性低等问题.试验结果显示,该方法能够有效地进行具有丢失数据的可分解马尔可夫网络结构学习. 相似文献
9.
10.
目前主要基于EM算法和打分-搜索方法进行具有丢失数据的贝叶斯网络结构学习,算法效率较低,而且易于陷入局部最优结构.针对这些问题,建立了一种新的具有丢失数据的贝叶斯网络结构学习方法.首先随机初始化未观察到的数据,得到完整的数据集,并利用完整数据集建立最大似然树作为初始贝叶斯网络结构,然后进行迭代学习.在每一次迭代中,结合贝叶斯网络结构和Gibbs sampling修正未观察到的数据,在新的完整数据集的基础上,基于变量之间的基本依赖关系和依赖分析思想调整贝叶斯网络结构,直到结构趋于稳定.该方法既解决了标准Gi 相似文献
11.
12.
Most existing finite impulse response (FIR) filters are restricted to models without delays. This paper proposes an continuous-time optimal unbiased FIR filter for input-delayed systems (CTOUFFID). A new integral transformation relation was introduced to derive the FIR filter. By applying this relation, the CTOUFFID problem is represented as an optimal control problem with zero terminal state. The filter gain function is obtained by solving two coupled matrix differential equations using initial conditions. The paper also offers discussion on the horizon size and a few special cases. The main benefit of the proposed solution is that it provides the maximum likelihood estimate with no requirements for the initial values. Finally, an application with the -404 turbofan engine model is presented to demonstrate the highly robust nature of the proposed FIR filer against incomplete noise information and unspecified model uncertainties. 相似文献
13.
14.
在网络化控制系统(Networked Control Systems,简记为NCSs)中,由于网络的介入使控制系统的规模和复杂性显著增加,且产生了各种新问题,为了使控制更加容易,需要设计合理的估计策略.主要从控制和通信2个角度出发,集中考虑了在量化影响、时延与丢包、不确定性等通信受限因素下状态估计策略的研究与进展.一直以来,状态估计都是诸如过程监控、故障诊断等控制领域中不可缺少的重要部分,当前已成为网络化控制系统研究的热点和准点,为抵消网络环境不确定性对闭环系统性能的影响,设计最优的状态估计策略必将成为不可缺少的因素之一. 相似文献
15.
针对传统锁频环(Frequency Locked Loop,FLL)辅助锁相环(Phase Locked Loop,PLL)在高动态环境下对卫星导航信号跟踪精度弱的问题,提出了利用类卡尔曼无偏有限长单位冲激响应(Finite Impulse Response,FIR)滤波器改进载波跟踪的方法。该方法无须已知系统状态噪声、测量噪声模型,基于经典卡尔曼载波跟踪模型,首次建立了类卡尔曼无偏FIR载波跟踪扩展模型。根据无偏估计原理,推导类卡尔曼无偏FIR滤波器增益矩阵,利用N点历史相位差数据和可程序化运行的递归算法实时计算三态估计矩阵。针对喷气推进实验室(Jet Propulsion Laboratory,JPL)高动态运动模型的仿真结果表明,相较于传统FLL+PLL载波跟踪方法,所提方法提高了载波相位、频率的跟踪精度,增强了跟踪环路的鲁棒性。载噪比为42 dB-Hz时,相位跟踪精度提升了97.8%,频率跟踪精度提升了54.6%,同时环路跟踪时间有所缩短。 相似文献
16.
J. AlMutawa 《International journal of systems science》2016,47(11):2733-2744
The objective of this paper is to develop a robust maximum likelihood estimation (MLE) for the stochastic state space model via the expectation maximisation algorithm to cope with observation outliers. Two types of outliers and their influence are studied in this paper: namely,the additive outlier (AO) and innovative outlier (IO). Due to the sensitivity of the MLE to AO and IO, we propose two techniques for robustifying the MLE: the weighted maximum likelihood estimation (WMLE) and the trimmed maximum likelihood estimation (TMLE). The WMLE is easy to implement with weights estimated from the data; however, it is still sensitive to IO and a patch of AO outliers. On the other hand, the TMLE is reduced to a combinatorial optimisation problem and hard to implement but it is efficient to both types of outliers presented here. To overcome the difficulty, we apply the parallel randomised algorithm that has a low computational cost. A Monte Carlo simulation result shows the efficiency of the proposed algorithms. 相似文献
17.
18.
Riccardo Lucchetti 《Computational Economics》2002,19(2):133-143
Multivariate GARCH models constitute the workhorse of empiricalapplications in several fields, a notable example being financialeconometrics. Unfortunately, ML (or quasi-ML) estimation of such models,although relatively straightforward in theory, is often made difficult bythe fact that available software relies on numerical methods for computingthe first derivatives of the log-likelihood; the fact that these modelsoften include a large number of parameters makes it impractical toestimate even medium-sized models. In this paper, closed-form expressionsfor the score of the BEKK model of Engle and Kroner (1995) are obtained,and strategies for efficient computation are discussed. 相似文献
19.
由于非线性降维方法对高维数据中存在的噪声比较敏感,导致最终的分类效果比较差.为了弥补其不足,在首先使用极大似然估计方法估测出样本数据本征维度的前提下,提出一种结合等距特征映射与主成分分析的方法.一方面能够使原始数据保持其在高维空间的几何结构,另一方面可以消除噪声对降维结果的影响,最终使得低维数据尽可能的保持原始样本数据集的内在特征.通过实验论证表明,该组合方法的效果比单独直接使用等距特征映射和主成分分析算法的效果都要好. 相似文献
20.
Huafeng Xia Yongqing Yang Feng Ding Ahmed Alsaedi Tasawar Hayat 《International journal of systems science》2019,50(6):1121-1135
For multivariable equation-error systems with an autoregressive moving average noise, this paper applies the decomposition technique to transform a multivariable model into several identification sub-models based on the number of the system outputs, and derives a data filtering and maximum likelihood-based recursive least-squares algorithm to reduce the computation complexity and improve the parameter estimation accuracy. A multivariable recursive generalised extended least-squares method and a filtering-based recursive extended least-squares method are presented to show the effectiveness of the proposed algorithm. The simulation results indicate that the proposed method is effective and can produce more accurate parameter estimates than the compared methods. 相似文献